TITLE: Fine-scale social and genetic structure of common bottlenose dolphins (*Tursiops truncatus*) in the Barataria Basin, Louisiana, USA

AUTHORS: Todd R. Speakman¹, Lynsey A. Wilcox², Brian C. Balmer³, Kevin P. Barry⁴, Corinne Paterson^{2,5}, Brian M. Quigley¹, Lori H. Schwacke¹, Carrie Sinclair⁴, Ryan Takeshita¹, Nicole L. Vollmer^{2,5}, Eric S. Zolman¹, Patricia E. Rosel²

1 National Marine Mammal Foundation, San Diego, California, USA

2 Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Lafayette, Louisiana, USA

3 Dolphin Relief and Research, Clancy, Montana, USA

4 Marine Mammal and Turtle Division, Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Pascagoula, Mississippi, USA

5 Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA

ABSTRACT

 The Barataria Bay Estuarine System (BBES) Stock of common bottlenose dolphins (*Tursiops truncatus*) in the northern Gulf of Mexico has been a focus of extensive research as a result of the Barataria Basin, Louisiana being one of the most heavily oiled estuaries following the *Deepwater Horizon* oil spill. The goal of this study was to build

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

upon previous research to better understand social and genetic structure of BBES dolphins.

7 2. Photo-identification data from 2010-2019 were analysed with SOCPROG to identify 8 dolphin social clusters. Genetic analyses were conducted on samples obtained during 9 remote biopsy surveys and health assessments (2010-2018) to assess if identified social 10 clusters were congruent with genetic clustering results, and to evaluate relatedness and gene flow within and between social and genetic clusters. Spatial analyses of the 11 cumulative photo-identification sighting histories from each cluster were also used to 12 13 determine their geographic range and degree of overlap within the Barataria Basin. 3. Social analyses identified four distinct clusters with some degree of geographic overlap 14 and similar utilization distributions as the three identified genetic clusters. Dolphins in 15 16 the Barataria Basin were confirmed to be genetically differentiated from those in adjacent coastal waters. 17

4. In general, genetic analyses differentiate distinct dolphin communities established through long-term (generational) preferential breeding behaviour. In contrast, social associations can be more fluid over the short-term, may change in response to habitat or predator/prey changes, and strong associations can be formed between a mix of related and unrelated individuals. The combination of genetic and social methodologies is valuable for developing a better understanding of complex dolphin social interactions and provides unique insights into dolphin behaviour that can be important for developing effective management strategies.

KEYWORDS: association patterns, community structure, kernel density estimation, microsatellites, mtDNA, photo-identification, protected species 1. INTRODUCTION Long-term studies have proven invaluable in understanding the social structure of both marine and terrestrial species (reviewed in Eisenberg, Muckenhirn & Rudran, 1972; Wells, 1991; Schradin & Hayes, 2017). Data collected from these studies can provide information on spatio-temporal shifts in abundance and distribution, reproductive success, and overall survival rates. In turn, this information can be used to assess impacts of anthropogenic stressors and develop conservation plans for a given population or species (reviewed in Hayes & Schradin, 2017). Bottlenose dolphins (Tursiops spp.) are long-lived, top-level predators characterized by fission-fusion societies wherein group composition can vary frequently with individuals changing associates over a period of hours to days (White, 1992; Connor et al., 2000). The social organization of dolphin societies can be influenced by density-dependent (e.g. predator and prey distribution) and density-independent (e.g. landscape complexity) factors (reviewed in Lusseau et al., 2006). For example, common bottlenose dolphins in Moray Firth, Scotland, were found to shift grouping patterns in relation to interannual variations in salmon (Salmo salar) abundance (Lusseau et al., 2004). In contrast, Lusseau et al. (2003) propose that common bottlenose dolphins in Doubtful Sound, New Zealand require a higher level of group stability as a result of the low productivity found within the local fjords. In the United States, common bottlenose dolphins (Tursiops truncatus) have a similar fission-fusion social structure to that of other bottlenose dolphin populations around the world

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
21	
51	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
12	
-+	
44	
45	
46	
47	
48	
10	
77 70	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
50	

60

50 (e.g. Quintana-Rizzo & Wells, 2001; Wells, 2003; Urian et al., 2009). In fission-fusion societies, most social interactions among dolphins occur within the same population or community 51 52 (Connor et al., 2000). However, some individual dolphins occasionally move beyond their core 53 areas into habitat utilized by different dolphin communities and high rates of interactions could 54 promote genetic exchange among adjacent groups (Möller & Beheregaray, 2004), although it 55 should be noted that physical dispersal to a new area does not necessarily equate with gene flow; dispersal and mating leading to successful production of offspring must both occur. 56 57 Nevertheless, these associations between groups can complicate the development of effective 58 management strategies for a given population or stock, even in the absence of gene flow between 59 them (Vollmer & Rosel, 2013). For example, they may result in geographic overlap between adjacent stocks making it difficult to draw stock boundaries, assign individuals to a stock, or 60 61 attribute dolphin mortalities to the proper stock (e.g. Balmer et al., 2019).

62 The United States Marine Mammal Protection Act defines a stock as a group of marine mammals of the same species or smaller taxa in a common spatial arrangement that interbreed 63 64 when mature (MMPA, 16 USC }1361 et seq.). Currently, for common bottlenose dolphins in 65 U.S. waters of the Gulf of Mexico, 32 bay, sound, and estuary (BSE) stocks are recognized, each generally associated with high, year-round site fidelity to a given BSE. Some BSE stocks form 66 additional finer-scale groupings. For example, in Tampa Bay, Florida, Urian et al. (2009) used 67 photo-identification (photo-ID) data to identify five social clusters of dolphins wherein there was 68 69 minimal spatial overlap. Although genetic exchange may occur among these clusters, ecological factors such as habitat selection and foraging strategies may play a role in the delineation of 70 these social groups over time. Other Southeast United States (SEUS) BSE stocks show evidence 71

of genetic subdivision, such as in Jacksonville, Florida (Rosel, Hansen & Hohn, 2009), Biscavne Bay, Florida (Litz et al., 2012), and the Indian River Lagoon, Florida (Richards et al., 2013). The Barataria Basin, located in Louisiana in the northern Gulf of Mexico, was one of the most heavily oiled estuaries following the Deepwater Horizon (DWH) oil spill (Michel et al., 2013). As a result, the Barataria Bay Estuarine System (BBES) Stock of common bottlenose dolphins has been a focus of extensive research over the past decade. Since 2010, photo-ID surveys, remote biopsy sampling, health assessments, and telemetry studies have examined the impacts of oil exposure on Job phin abundance, health, reproduction, and survival. Long-term photo-ID data indicate BBES de bins have year-round, multi-year site fidelity to the Barataria Basin (McDonald et al., 2017). Result. from a study of BBES dolphins tagged with satellite-linked transmitters support long-term residence, and further showed that BBES dolphins have localized movements that, in general, can be closefield into one of three ranging patterns: 1) western Barataria Basin, 2) barrier islands, and 3) eastern Barataria Basin (Wells et al., 2017). Photo-ID analysis has revealed limited movement of doip' ins from the Barataria and Caminada Bays (Figure 1) into either the adjacent Terrebonne-Timbalier Bay estuarine system to the west (Mullin et al., 2018) or the south-eastern region of the basin (Garrison, Litz & Sinclair, 2020). Genetic studies completed on BBES dolphin samples collected during 2010-2013 from remote biopsies and health assessments indicated the presence of at least two genetically distinct groups within the Barataria Basin (Rosel et al., 2017). The sample locations for one group were within estuarine waters of the western portion of the basin and the other group was found within estuarine waters of the central and eastern areas, with overlap of the two groups along the barrier islands. Using nuclear microsatellite data, significant differentiation was seen between the two groups, as well as between each BBES group and dolphins sampled > 2 km from shore,

3 4	95	belonging to the Western Coastal Stock (WCS). Rosel et al. (2017) also found evidence for three	e
5 6	96	genetic groups within the basin, however, with weaker support than division into two groups,	
/ 8 9	97	and therefore, differentiation of the three groups was not fully investigated. They suggested that	
10 11	98	further studies incorporating a larger sample size could increase our understanding of the geneti	c
12 13	99	differentiation and distribution of groups within the Barataria Basin.	
14 15 16	100	The goal of this study was to build upon previous research conducted within the Baratar	ia
10 17 18	101	Basin to better understand social and genetic structure of BBES dolphins. Specifically, the	
19 20	102	objective of this study was to determine the number of discrete social and genetic groups within	L
21 22 22	103	this estuarine habitat and determine how those different units compare to one another. The	
23 24 25	104	results of this study offer a framework for using multiple sampling methods to provide insight	
26 27	105	into cetacean population structure and habitat use and can inform future stock management	
28 29	106	decisions and restoration planning.	
30 31 32	107		
33 34	108	2. METHODS	
35 36	109		
37 38 30	110	2.1 Study location	
40 41	111	The Barataria Basin is located in southern Louisiana between Bayou Lafourche to the	
42 43	112	west and the Mississippi River to the east (Figure 1). This large, shallow estuary includes a	
44 45 46	113	variety of wetlands from fresh water to brackish to salt water. The basin is separated from the	
40 47 48	114	Gulf of Mexico by a chain of barrier islands and covers approximately 1,700 km ² with an	
49 50	115	average depth of 2 m (USEPA, 1999). Tides are diurnal and the substrate comprises primarily a	
51 52	116	silty-clay sediment with varying amounts of detrital matter (Conner & Day, 1987). The basin's	
53 54 55	117	protected shores are characterized by tidal flats and brackish marshes. The marsh vegetation is	
56 57			6
58 59			
60		http://mc.manuscriptcentral.com/aqc	

predominantly smooth cord grass (Spartina alterniflora) in the southern reaches transitioning to saltmeadow cordgrass (S. patens) further north (Baltz, Rakocinski & Fleeger, 1993). BBES dolphins generally inhabit the Barataria Basin in latitudes south of Little Lake (Figure 1). 2.2 Photo-ID data collection and analysis Photo-ID data used to analyse dolphin social structure were collected during mark-recapture surveys conducted between 2010-2019. Surveys were completed in two phases: Phase 1 - 2010-2014 (10 primary periods; see McDonald et al., 2017 for field effort) as part of the DWH Natural Resource Damage Accessment (NRDA), and Phase 2 - March 2019 (1 primary period; see Garrison, Litz & Sinclair (2021) as part of a study to inform an Environmental Impact Statement (EIS) required for the propos 'd ¹/id-Barataria Sediment Diversion (MBSD) project (U.S. Army Corps of Engineers, 2017). The DWH NRDA study area comprised the western and central portions of the BBES stock area, primarily the estuarine waters in and adjoining Barataria and Caminada Bays (Figure 1). Phase 1 survey transects ran east to west and generally covered the open portions of both bays. Phase 2 surveys covered Phase 1 transects in addition to smaller embayments and contours of marsh edge habitat (including south-eastern portions of the basin not previously surveyed) in order to include coverage of waters north of Bastian, Lanaux, and Pelican islands (Figure 1). Following the robust design for mark-recapture studies (Pollock, 1982), survey effort was divided into primary periods. Primary periods consisted of three to four secondary sessions, during each of which all survey transects were completed. During Phase 1, each transect was surveyed three times per primary period. During Phase 2, which only comprised one primary period, transects were surveyed four times in total. Each primary period was completed in 1-2 weeks.

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
38	
39	
40	
л 1	
-11	
42	
43	
44	
15	
46	
47	
48	
10	
77 72	
50	
51	
52	
52	
22	
54	
55	
56	
50	
5/	
58	
59	

60

141 Field methods were standardized across both survey phases and are detailed in Rosel et 142 al. (2011) and McDonald et al. (2017). Briefly, when dolphins were encountered, data including 143 GPS location and dolphin group size/composition were recorded for each group. A dolphin 144 group was defined as all dolphins in relatively close proximity (~ 100 m), engaged in similar 145 behaviour, and generally heading in the same direction (Wells, Scott & Irvine, 1987). During 146 photo-ID surveys, effort was made to photograph each individual of the group with Canon EOS digital cameras (Canon Inc., Ota City, Tokyo, Japan) equipped with 100-400 mm telephoto 147 lenses. During biopsy sampling, attempts were made to photograph sampled individuals for 148 149 comparison to the Barataria dorsal fin catalogue. 150 Photo analysis techniques, de vib d in Melancon et al. (2011), were followed to assure quality standards. All sorted photographs viere scored independently for photo quality and 151 152 distinctiveness (Urian et al., 2014). Standard photo-ID techniques were used to catalogue 153 individuals based on dorsal fin characteristics (Würsig & Würsig, 1977; Würsig & Jefferson, 154 1990). The program finFindR was used to match all Phase 2 photos (Thompson et al., 2021). All 155 matches made using finFindR were confirmed by two experienced researchers. All photos and 156 associated sighting data were entered into the Barataria FinBase database created during Phase 1 157 (Adams et al., 2006). A discovery curve was plotted to display the number of marked dolphins and number of new individuals identified each year of sampling effort, as well as the total 158 159 number of individuals catalogued across the study. Marked dorsal fins had two or more 160 significant features or at least one major feature with a good probability of re-identification 161 (Speakman et al., 2010; Urian et al., 2014). The average marked proportion was calculated by 162 dividing the number of marked (distinctive) individuals identified by the number of marked and 163 unmarked (not distinctive) individuals photographed during the study (Speakman et al., 2010).

To investigate associations among individual dolphins and identify social clusters, only high-quality photographs of individuals with distinctive dorsal fin characteristics, identifiable across surveys, were included in the association data set. The photo-ID data were analysed using the hierarchical cluster analysis feature in SOCPROG v2.9, a series of MATLAB programs designed specifically to analyse social structure from large datasets for species such as bottlenose dolphins (Whitehead, 2009). Analyses included only dolphins sighted 10 or more times across the study period (Quintana-Rizzo & Wells, 2001; Ingram & Rogan, 2002; Urian et al., 2009), excluding same day resights. Individuals with less than 10 sightings were excluded from the cluster analysis in order to minimuze bias due to low sample size (Whitehead, 2008). Individuals were considered to be associated if o^k erved in the same sighting on the same day (Whitehead & Dufault, 1999). Association indices can be used to control for missed observations in social network

analyses and are an important factor to consider when quantifying social relationships (Hoppitt & Farine, 2018). Only images collected during mark-recapture surveys, where the objective was to photograph every individual in the group, were used for the association analysis to minimize potential bias. A simple ratio association index (SRI) with the default average linkage algorithm was used to identify dolphin social clusters (Whitehead, 2009). The SRI, widely used in animal social network analyses, calculates the probability that two individuals are observed together given one has been seen. This index does not overestimate associations between individuals, which has been found with alternative methods such as using twice-weight and half-weight indices (Ginsberg & Young, 1992). Hoppitt & Farine (2018) found the SRI to be valid if the probability of failing to see two individuals together is the same as the probability of failing to see both when they are apart.

Page 11 of 65

A dendrogram displays the results of the hierarchical cluster analysis and outlines the degree of association between individuals in the population. Newman's test of modularity (O) was used to test whether the dolphins within the Barataria Basin can effectively be divided into social clusters (Newman, 2004; Whitehead, 2008). Newman (2004) suggests O > 0.3 indicates accurately represented and well defined divisions. The effectiveness of hierarchical clustering was evaluated through the cophenetic correlation coefficient (CCC). This coefficient, calculated by SOCPROG, ranges from 0 to 1 and indicates how well the dendrogram correlates with the actual association indices, with a value of ≥ 0.8 representing reliable clustering (Whitehead, 2009). Median group size was calculated using the revised (post-photo analysis) best field estimate for all dolphin sighting groups containing each social cluster individual. Network analysis statistics (cluster means with bootstrap standard errors using 1,000 replicates) were calculated in SOCPROG to compare the social connectivity within and between social clusters (Newman, 2004). Five social network metrics were evaluated for each social cluster: 1) affinity -the weighted average strengths of all close associates; 2) clustering coefficient - how closely associates are themselves connected; 3) eigenvector centrality - a measure of how connected individuals are within their cluster; 4) reach - a measure of indirect connectedness; and 5) strength - the sum of all association indices with other individuals (Whitehead, 2009).

205 2.3 Genetic data collection and analysis

206 Skin samples for genetic analyses were collected during four remote biopsy surveys
207 (2010-2012; Balmer et al., 2015) and during health assessment studies (2011-2018, except 2012
208 and 2015; Schwacke et al., 2014) conducted within Barataria and Caminada Bays (Figure 1). All
209 skin samples were preserved in a 20% DMSO/saturated NaCl solution. Remote biopsy field

sampling methods are detailed in Sinclair et al. (2015). The genetic samples included 126 samples collected between 2010 and 2013 that were processed and analyzed by Rosel et al. (2017). An additional 106 skin samples collected in 2014-2018 were added to this study for a total of 232 genetic samples. DNA was extracted from the new samples using a Qiagen DNeasy Blood & Tissue kit following manufacturer's protocols. DNA quality was examined via gel electrophoresis and quantity measured by fluorometry (GE Healthcare Hoefer DyNA Quant 200 or Invitrogen/Thermo Fisher Scientific Qubit 4 Fluorometer). The sex from each sample collected by remote biopsy was genetically determined via PCR using ZFXY and SRY specific primers (Rosel 2003). The sexes of individuals captured during health assessment studies were determined in the field by examining ... e senital slit and the presence/absence of mammary slits (Smolker et al., 1992). Samples were genotyped at 43 nuclear *r* stymorphic microsatellite loci previously optimized for T. truncatus (Rosel, Hansen & Hohn, 2009; Rosel et al., 2017; Vollmer et al., 2021; see Supporting Information Table S1). Modifications to original primer sequences were

made for D08, DlrFCB12, EV94, and MK8 (Rosel et al., 2017; Vollmer & Rosel, 2017; Vollmer

et al., 2021). Excluding MK6, the reverse primer of each microsatellite locus or the forward
 et al., 2021). Excluding MK6, the reverse primer of each microsatellite locus or the forward

primer of D22 was PIGtailed as described in Brownstein, Carpten & Smith (1996) to reduce one

base pair (bp) stutter. All primer sequences are provided in Supporting Information Table S1.

Three of the loci used in this study, Ttr20, Ttr51, and Ttr98, were amplified by Rosel et al.

(2017) but were excluded from their final analyses due to evidence of null alleles in one of their

studied populations. Primer sequences and PCR conditions for those loci were, therefore, not

- reported in the previous study but have been included in Supporting Information Table S1. The
- 43 loci were genotyped using a Qiagen Type-it Microsatellite PCR kit in eight multiplexes, each

Page 13 of 65

1 2		
2 3 4	233	containing four to seven loci, plus one locus (KWM12a) amplified alone and co-loaded with one
5 6	234	of the multiplexes (see Supporting Information Table S1 for PCR multiplexing and conditions).
7 8 0	235	A positive and negative control were included with each PCR reaction. All PCR products,
10 11	236	including controls, were run on an ABI 3130 or ABI 3500 Genetic Analyzer using GeneScan 500
12 13	237	LIZ or GeneScan 600 LIZ v2.0 size standards (Applied Biosystems), respectively. Microsatellite
14 15	238	fragments were analysed and allele sizes determined using GeneMapper v6 (Life
16 17 18	239	Technologies/Applied Biosystems). The two instruments were calibrated using a broad set of
19 20	240	Tursiops samples to ensure allele calling was consistent. In addition, the genotypic data from the
21 22	241	Rosel et al. (2017) study were collected in the same lab with the same protocols.
23 24 25	242	A genotyping error rate was calculated by re-genotyping 10% of the samples at all 43
26 27	243	loci. Microsatellite Toolkit (Park, 2002) was used to identify any dolphins that had been sampled
28 29	244	more than once and probability of identity estimators, $P_{(ID)}$ and $P_{(ID)sib}$ (Waits, Luikart &
30 31	245	Taberlet, 2001), were calculated in GenAlEx v6.5 (Peakall & Smouse, 2012). One member of
32 33 34	246	each duplicate pair was removed from further microsatellite analyses.
35 36	247	The inclusion of closely related individuals in a data set can bias methods used to
37 38	248	estimate genetic diversity that rely on allele frequencies such as Bayesian clustering analysis, as
39 40 41	249	well as diversity estimators such as heterozygosities, Hardy-Weinberg equilibrium (HWE), and
42 43	250	linkage disequilibrium (Anderson & Dunham, 2008; Rodríguez-Ramilo & Wang, 2012; Wang,
44 45	251	2018). Therefore, closely related individuals are often removed from genetic analyses. During
46 47	252	Barataria Basin field sampling, it was possible that individuals from the same family group were
48 49 50	253	sampled during health assessments when a capture set involved multiple dolphins or during
51 52	254	remote biopsy surveys when more than one animal was sampled from a single sighting.
53 54	255	Furthermore, photo-ID evidence indicated that several mother-calf pairs were sampled during
55 56 57		12
58 59		
60		http://mc.manuscriptcentral.com/aqc

health assessments. Following standard practice, one individual from each of the mother-calf

pairs was removed and one individual was removed from pairs with high pairwise relatedness

values (r) from the same capture set or biopsy sighting, to prevent introducing bias from these

estimators [four moment estimators (Queller & Goodnight, 1989; Li, Weeks & Chakravarti,

1993; Lynch & Ritland, 1999; Wang, 2002) and two likelihood-based estimators (Milligan,

2003; Wang, 2007)] in RStudio v1.3.1093 (RStudio Team, 2020) with R v3.6.2 (R Core Team,

2019). To determine the best relatedness estimator given the data, simulations were conducted

using allele frequencies from the Berataria Basin samples to generate 100 pairs of each of the

correlation coefficients were calculated between observed and expected relatedness values of the

estimator (trioml; Wang, 2007), was then used to estimate r and identify closely related pairs ($r \ge 1$

The optimal number of genetic clusters (K) within the Barataria Basin was evaluated

using the Bayesian clustering program STRUCTURE v2.3.4 (Pritchard, Stephens & Donnelly,

2000). An initial STRUCTURE run was completed in which microsatellite data from 29 dolphins

of the WCS from Rosel et al. (2017) were included to determine if any dolphins sampled within

exclusion from further analyses. This run was completed using the admixture model, correlated

allele frequencies, 20 independent runs for K = 1-10, with a burn-in length of 1 X 10⁶ iterations

followed by 5 X 10⁶ Markov Chain Monte Carlo (MCMC) repetitions, and location priors were

set for the two sampling locations (Barataria Basin or WCS). Program defaults were used for all

the Barataria Basin would cluster more closely with this coastal stock and therefore merit

four relationship types (parent-offspring, full-sibling, half-sibling, and unrelated). Pearson

simulations. The relatedness estimator with the Lighest coefficient, the triadic likelihood

related pairs. The R package *related* (Pew et al., 2015) was used to calculate r for six relatedness

2	
3	256
4	230
5	257
6	257
7	
8	258
9	
10	259
11	
12	260
13	200
14	264
15	261
16	
17	262
18	
19	263
20	
21	261
22	204
23	
24	265
25	
26	266
27	
28	267
29	207
30	200
31	208
32	
33 24	269
54 25	
22 26	270
0C 72	
30	271
30	-/-
<u>ح</u> د	777
- - -0 ⊿1	212
יד ⊿ס	
ר 42	273
44	
45	274
46	
47	275
48	_, 5
49	276
50	270
51	
52	277
53	
54	278
55	
56	
57	
58	
59	
60	

0.45).

1

http://mc.manuscriptcentral.com	m/aqc

other parameters. All STRUCTURE runs were performed on multi-core processors using the program ParallelStructure (Besnier & Glover, 2013) on the CIPRES Science Gateway v3.3 server (Miller, Pfeiffer & Schwartz, 2010). The most likely number of clusters was evaluated using three methods for estimating the best value of K: the mean log-likelihood of the data (In Pr(X/K)) (Pritchard, Stephens & Donnelly, 2000), ΔK (Evanno, Regnaut & Goudet, 2005), and the parsimony index in KFinder (Wang, 2019). Structure Harvester v0.6.94 (Earl & vonHoldt, 2012) was used to visualize ΔK and $\ln \Pr(X/K)$ plots and to generate input files for the program CLUMPP v1.1.2 (Jakobsson & Rosenberg, 2007). The Greedy algorithm in CLUMPP was then applied to average the membership coefficient (q) from all replicate runs of the best K. Using the output files from CLUMPP, individuals were assigned to each cluster using a threshold of $q \ge 1$ 0.50. Further STRUCTURE runs were completed on each of the identified clusters to determine if hierarchical levels of population structure were present. STRUCTURE parameters were set as previously described but without the use of location priors information and with a burn-in length of 1 X 10⁵ iterations followed by 5 X 10⁵ MCMC repetitions. The optimal number of clusters was determined by evaluating the three methods for estimating K as before and individuals were assigned to clusters with $q \ge 0.50$. Subsequent STRUCTURE runs were conducted until no subclustering was indicated.

For each of the Barataria Basin genetic clusters identified by STRUCTURE and for the WCS, Microchecker v2.2.0.3 (van Oosterhout et al., 2004) was used to test each locus for the presence of null alleles, large allelic dropout, and genotype scoring errors due to stuttering. Deviation from HWE proportions and linkage disequilibrium were measured using Genepop v4.2 (Rousset, 2008) with 10,000 dememorizations, 1,000 batches, and 10,000 iterations per batch. Levels of significance were adjusted for multiple comparisons using the sequential

2
3
1
т с
5
6
7
8
0
9
10
11
12
13
14
14
15
16
17
18
10
17
20
21
22
23
21
24
25
26
27
28
20
29
30
31
32
22
24
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
40
49
50
51
52
53
55
54
55
56
57
58
50
59
60

302 Bonferroni technique (Holm, 1979). The number of alleles, private alleles, and observed and 303 expected heterozygosities per locus were calculated using ARLEQUIN v3.5.2.2 (Excoffier & Lischer, 2010). Allelic richness was calculated in FSTAT v2.9.4 (Goudet, 1995; Goudet, 2003). 304 305 Differences in mean observed heterozygosity and allelic richness were tested using an analysis of 306 variance (ANOVA). To investigate genetic differentiation among STRUCTURE clusters, global 307 and pairwise F_{ST} values were estimated with the microsatellite data in ARLEQUIN and significance levels were adjusted using sequential Bonferroni. 308 The 5' end of the mitochondrial DNA (mtDNA) control region and flanking transfer-309

310 RNA gene was amplified using PCR and the primers L15824 (Rosel et al., 1999) and H16498 (Rosel, Dizon & Heyning, 1994) with conditions from Vollmer & Rosel (2017), including a 311 312 negative no-DNA control with each PCR reaction. Amplified products were purified from low 313 melting point agarose gels by agarose digestion and then sequenced in the forward and reverse directions using a BigDye Terminator v1.1 cycle sequencing kit (Applied Biosystems) on an ABI 314 3130 or ABI 3500 Genetic Analyzer. The forward and reverse reads were edited independently 315 316 using Sequencher v5.4.6 (GeneCodes) or Geneious Prime 2000.0.5 (https://www.geneious.com), then assembled for final consensus sequences. Haplotypes were identified using Geneious Prime 317 318 and heteroplasmic sequences (Vollmer et al., 2011) were excluded from further mtDNA 319 analyses. ARLEQUIN was used to calculate nucleotide and haplotype diversities (Nei, 1987) for 320 each Barataria Basin cluster identified with STRUCTURE and the WCS, and to estimate global 321 and pairwise levels of differentiation using $F_{\rm ST}$ and $\Phi_{\rm ST}$. The Tamura & Nei (1993) model was 322 identified as the best model of evolution to use in ARLEQUIN for estimating $\Phi_{\rm ST}$ from the 323 program JModeltest v2.1.10 (Darriba et al., 2012) run on the CIPRES Science Gateway v3.3

I	
2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
55	
54	
55	
56	
57	
58	
59	

337

324 server and using the Bayesian Information Criterion (BIC). Levels of significance for pairwise estimates of F_{ST} and Φ_{ST} were corrected for multiple comparisons using sequential Bonferroni. 325 326 327 2.4 Combined analyses using data from social and genetic clusters 328 Spatial data were analysed to determine the geographic range and overlap of dolphin 329 clusters identified via the social analyses and the genetic data. Utilization distributions (UDs) [i.e. per cent volume contours (PVCs)] represent the probability that an animal or group of 330 animals is found in a giver space (Worton, 1989). Kernel density estimates (KDEs) (Worton, 331 332 1989) were estimated using the cumulative photo-ID sighting locations of each social and genetic cluster using the Geostatistic². An ilyst and Spatial Analyst Toolboxes in ArcGIS 10.7.1 333 (ESRI, Redlands, CA, USA; reviewed by MacLeod, 2013). Using KDEs, 95th (i.e. the entire 334 335 range or where an individual can likely be found 95% of the time) and 50th (i.e. the core area or where an individual is likely to be found 50% of the time) percentile UDs were determined. KDE 336

parameter) that is used (Horne & Garton, 2006). The appropriate bandwidth was determined by
using a rule-based ad hoc method (Kie, 2013). Genetic samples that qualified for the SOCPROG
analysis by having 10 or more photo-ID sightings were compared to their satellite telemetry
assignment group reported by Wells et al. (2017).

distributions can be over or under-estimated depending on the bandwidth value (or smoothing

To compare kinship within the identified genetic and social clusters, average pairwise relatedness and variance for pairs of individuals within each cluster and for the entire Barataria Basin data set were calculated using the 43 microsatellite loci and the trioml estimator in the program COANCESTRY v1.0.1.0 (Wang, 2011). The difference in average relatedness between each cluster (social and genetic) and the entire data set was calculated and tested for significance

2		
3 4 5 6	347	using the bootstrap method (10,000 repetitions) and a 95% confidence level in COANCESTRY
	348	to determine if relatedness within any group was higher than that of the overall dataset.
7 8	349	To test for evidence of sex-biased dispersal in the genetic and social clusters, two
9 10 11	350	methods were used. First, the assignment-based procedure developed by Favre et al. (1997) and
12 13	351	extended by Mossman & Waser (1999) was implemented in GenAlEx. This method detects sex-
14 15	352	biased dispersal by calculating the mean Assignment Index correction (AIc) for males and
16 17	353	females. Next, non-parametric tests for significance between the mean AIc values of the sexes
18 19 20	354	were performed using a Mann Whitney U-test. The more dispersing sex generally has a negative
21 22	355	mean AIc (Goudet, Perrin & Waser, 2002). For the second method, average relatedness was
23 24	356	compared between the female-female and male-male pairs of each cluster. The significance of
25 26 27 28 29	357	differences in mean relatedness between the two sexes within a cluster was then tested in
	358	COANCESTRY using the bootstrap method as previously described. The average relatedness of
30 31	359	the more dispersing sex would be expected to be lower than the average relatedness of the more
32 33	360	philopatric sex. This relatedness-based method has been shown to detect lower levels of sex-
34 35 36	361	biased dispersal not identified by the assignment-based method (Phillips et al., 2014). To further
37 38	362	investigate any differences in gene flow between the sexes, ARLEQUIN was used to calculate
39 40	363	overall estimates of $F_{\rm ST}$ and $\Phi_{\rm ST}$ among the genetic clusters for males and females separately,
41 42 42	364	using mtDNA data.
43 44 45	365	
46 47	366	3. RESULTS
48 49	367	
50 51 52	368	3.1 Photo-ID data and social analysis
53 54		
55 56		17
57 58		17
59 60		http://mc.manuscriptcentral.com/aqc

2		
3 4	369	From 2010 to 2014 (Phase 1), 132 small vessel-based mark-recapture surveys were
5 6	370	completed (McDonald et al., 2017), while 36 vessel surveys were completed in 2019 as part of
/ 8 0	371	Phase 2. In total, survey vessels during both phases covered over 15,000 km of trackline across
10 11	372	1,087 hours and took 99,916 photographs. Crews spent 408 hours in dolphin sightings over the
12 13	373	10 years with an average sighting time of 17 min 46 sec. In total, 1,379 dolphin groups were
14 15	374	encountered with an average group size of 8 individuals (SD = 10.1 ; range: $1-71$; median = 4).
16 17 18	375	Through photo analysis, a total of 2,091 unique individual dolphins were identified with an
19 20	376	average marked proportion of 75%. The highest proportion of dolphins (48%; $n = 995$) was seen
21 22	377	during a single primary period while only one individual was observed in all 11 primary periods.
23 24 25	378	The discovery curve showed an increase in catalogued individuals at every mark-recapture
23 26 27	379	primary period including a steep increase between primary period 10 and 11, coinciding with a
28 29	380	5-year gap between surveys and the inclusion of previously unsurveyed regions in 2019 (Figure
30 31	381	2). From 2010 to 2014, the number of new dolphins added to the catalogue following each
32 33 34	382	primary period ranged from 34 to 312 (mean = 158). The 2019 effort added 507 new individuals
35 36	383	to the catalogue, 44% of which were sighted in the previously unsurveyed south-eastern region.
37 38	384	A total of 112 individuals were sighted more than 10 times (mean = 12 sightings; range
39 40 41	385	10-24) and were included in the association analysis. Based on associations among these
42 43	386	individuals, SOCPROG identified four distinct social clusters (Figure 3). The resulting
44 45	387	cophenetic correlation coefficient of 0.80 and modularity value of 0.34 indicated a good fit of the
46 47	388	data with valid clustering and well-defined community divisions. The island (red) cluster was the
48 49 50	389	largest with 65 individuals followed by the western (yellow) cluster with 40 individuals. Both the
51 52	390	east-central (green) and west-central (blue) clusters were small, containing just three and four
53 54	391	individuals, respectively. The east-central social cluster was characterized by the largest median
55 56 57		18
58		
59 60		http://mc.manuscriptcentral.com/aqc

392 group size (n=17) but lower social metrics, while the western cluster was the opposite with the 393 smallest group size (n=8) and higher social metrics (Table 1).

395 3.2 Genetic analyses

DNA was successfully extracted from all Barataria Basin skin samples and all were genotyped at 43 microsatellite loci. Nine samples were identified as having matching genotypes to individuals analysed by Rosel et al. (2017). The probability of identity estimates was low $(P_{(ID)} = 3.6 \times 10^{-35} \text{ and } P_{(ID)sib} = 1.3 \times 10^{-14})$, therefore it is unlikely that two dolphins would share the same genotype at all 43 loci. Furthermore, each duplicate pair had matching sexes and mtDNA control region haplotypes. One sample from each of the nine duplicates was removed, resulting in a total of 223 individuals from the Barataria Basin used in further analysis. Re-genotyping of 10% of the samples resulted in a genotyping error rate of 0.00%.

The *r* values of 19 known mother-calf pairs ranged from 0.50-0.68 and each pair had identical mtDNA control region haplotypes. Four additional pairs of individuals each sampled within the same capture set had *r* values \geq 0.45. One individual from each of these pairs as well as from the mother-calf pairs was excluded from further analyses, resulting in a final sample size of 203 for the Barataria Basin.

409 The optimal number of clusters identified from the initial STRUCTURE run, which 410 included dolphins from the Barataria Basin and the WCS, was K = 2 using the ΔK method. The 411 parsimony index and the ln Pr(*X*/*K*) method identified a best *K* of 4 and 5, respectively 412 (Supporting Information Table S2). Because hierarchical population structure was expected 413 when including individuals from the WCS, ΔK estimation was used to determine the initial best 414 number of clusters. All dolphins of the WCS grouped into a single cluster with the addition of

seven individuals sampled within the Barataria Basin using $q \ge 0.50$ (Supporting Information Figure S1). The second STRUCTURE cluster contained 195 dolphins sampled within the Barataria Basin. One individual had a q value of 0.50 to each cluster and therefore was not assigned to either cluster. This individual plus the seven dolphins with higher assignment coefficients to the WCS were removed from further analysis of the Barataria Basin data set. The average q values of the WCS and Barataria Basin groups were 0.94 and 0.90, respectively. Running the WCS through STRUCTURE alone revealed no hierarchical structure (Supporting Information Table S2). STRUCTURE analysis of the Barataria Basin data set alone (n=195) estimated a best K =3 using all three methods for estimating K (Supporting Information Table S2). These three genetic clusters are geographically distributed, with one group located primarily near the barrier islands of Grand Isle and Grand Terre Islands and the other two groups utilizing either the western or the central and eastern estuarine habitats of the basin with overlap near the barrier islands (Figure 4A). Using a *q*-value cutoff of 0.50, individuals were grouped into 'western', 'east-central' or 'island' genetic clusters with average q values per cluster ranging from 0.71 to 0.76. Approximately 18% of the samples were not assigned to any cluster due to q-values lower than the 0.50 threshold (Figure 4B). Re-running each of the Barataria Basin clusters alone through STRUCTURE revealed no further partitioning of samples (Supporting Information Table S2). No microsatellite loci showed significant departure from HWE after Bonferroni

435 correction for any of the Barataria Basin genetic clusters or the WCS (Supporting Information
436 Table S3). Ttr61 and Ttr71 showed evidence of linkage disequilibrium in the Barataria Basin
437 island cluster only. No evidence of null alleles was found in the Barataria Basin western or island

2
3
4
5
6
7
/
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
27
5Z
33
34
35
36
37
38
20
39
40
41
42
43
44
45
ч. Л С
40
47
48
49
50
51
52
52
53
54
55
56
57
58
50
17

60

453

1

438	clusters, however Ttr19, Ttr20, and TexVet5 in the east-central cluster and Ttr51 in the WCS did
439	show evidence of null alleles due to homozygote excess. Since evidence of linkage
440	disequilibrium and null alleles were not present for the same loci across groups, all loci were
441	retained for genetic analyses. The number of alleles and private alleles, allelic richness,
442	heterozygosity values, and HWE P-values per locus for each group is provided in Supporting
443	Information Table S3. Observed heterozygosity was not significantly different among groups
444	(ANOVA, $F = 0.58$, $df = 3$, $P = 0.63$) and values ranged from 0.6170 (±0.1833) to 0.6632
445	(± 0.1793) with the lowest and highest values estimated for the east-central cluster and the WCS,
446	respectively. Mean allelic richness was also not significantly different among groups (ANOVA,
447	F = 1.25, $df = 3$, $P = 0.29$). Among the Barataria Basin clusters, the mean number of alleles per
448	locus ranged from 5.4 to 6.2 and the number of private alleles were 5, 13, and 23 for the western,
449	east-central, and island clusters, respectively.
450	All pairwise comparisons of microsatellite F_{ST} were significant (Table 2A). Pairwise F_{ST}
451	values between the WCS and each of the Barataria Basin clusters ranged from 0.021 to 0.044 (all
452	$P < 0.0001$; Table 2) with the highest F_{ST} estimated between the WCS and the Barataria Basin

0.023, P < 0.0001) was seen between the east-central and island clusters and similar values were 454 seen between the western cluster and the east-central and island clusters ($F_{ST} = 0.031$ and 0.030, 455 456 respectively, P < 0.0001).

western cluster. Among the Barataria Basin clusters, the lowest level of differentiation (F_{ST} =

The final mtDNA control region alignment length was 353 bp. A total of 24 haplotypes 457 were found, 16 in the Barataria Basin samples and 12 in the WCS. Of the 24 haplotypes, eight 458 459 were heteroplasmic (Supporting Information Table S4). After removal of the heteroplasmic 460 haplotypes, seven of the haplotypes were unique to the WCS and five were unique to the

Page 23 of 65

Barataria Basin data set. Novel sequences were submitted to GenBank (MZ615655-MZ615665; Supporting Information Table S4). Haplotype and nucleotide diversity for the Barataria Basin clusters ranged from 0.6456 (± 0.0539) to 0.5933 (± 0.0626), and 0.0030 (± 0.0023) to 0.0044 (± 0.0029) , respectively. Diversity indices were higher for the WCS, with a haplotype diversity of 0.8439 (±0.0533) and nucleotide diversity of 0.0079 (±0.0048). Pairwise comparisons of F_{ST} and $\Phi_{\rm ST}$ were significant between the WCS and each of the three Barataria Basin clusters (Table 2B). Pairwise F_{ST} was also significant between the Barataria Basin east-central cluster and the other two Barataria Basin clusters, but not for Φ_{ST} after correcting for multiple comparisons (Table 2B). Significant differences were not seen between the Barataria Basin western and island clusters for either estimator. Average overall relatedness within cach of the Barataria Basin genetic clusters and within the western SOCPROG social cluster was significantly higher using a 95% confidence level than the relatedness of the entire Barataria Basin sample set (r = 0.0262) (Figure 5; Supporting Information Table S5A). Average relatedness within the island social cluster (r = 0.0235) was not significantly different from the overall Barataria Basin sample set (Supporting Information Table S5A). Relatedness within the east-central and west-central social clusters could not be calculated because there were not enough samples with genetic data assigned to those two

478 clusters.

Tests of sex-biased dispersal for the genetic and social clusters were not significant using the assignment-based method implemented in GenAlEx (comparisons of mean AIc values; Table 3). Using the bootstrapping method of COANCESTRY (relatedness-based estimates) with a 95% confidence level, the mean difference in *r* between male and female pairs was significant only for the east-central genetic cluster with males having a higher average relatedness but relatedness

values were generally low for both sexes and the difference between female and male pairs was small (r observed average difference = -0.0132; Supporting Information Table S5B). Among the genetic clusters, overall estimates of F_{ST} based on mtDNA data were significant (P < 0.05) for females ($F_{ST} = 0.100, P = 0.0027$) but not significant for males ($F_{ST} = 0.025, P = 0.1190$). Estimates of Φ_{ST} were identical and not significant for either sex (females: $\Phi_{ST} = 0.032$, P =0.0865; males: $\Phi_{ST} = 0.032$, P = 0.0937). 3.3 Spatial analysis Cumulative UDs derived from the KDE analysis indicated a spatial distinction between the SOCPROG social clusters with some cegree of overlap in geographic ranges (Figure 6). The smallest amount of spatial overlap occurred between the east-central (green) and western (yellow) social clusters while the greatest amount of overlap occurred between the island (red) and west-central (blue) clusters. The western cluster had the largest 50% and 95% UDs, with 4.8 km² and 37.1 km², respectively (Table 4). The east-central social cluster had the smallest UDs, with 0.99 km² area for the 50% UD and 7.6 km² area for the 95% UD (Table 4). Kernel density estimate analysis of the cumulative photo-ID sightings for each genetic cluster exhibited a large degree of overlap in their geographic ranges (50% UDs for all three

genetic clusters overlapped along the north side of Grand Isle and in Barataria Pass between

Grand Isle and Grand Terre Islands; Figure 6). The UDs for the western and island genetic clusters were congruent with the western and island social clusters. The east-central genetic cluster had similar UDs as the east-central and west-central social clusters' combined UDs. The western genetic group had all of its 95% UD west of Barataria Bay and the Grand Terre Islands. The east-central genetic group had the largest 50% and 95% UDs, with 7.2 km² and 48.8 km²,

2	
3	507
4	
5	508
0 7	
8	509
9	
10	510
11	
12	511
13	
14 15	512
16	012
17	512
18	515
19	E11
20	514
21	F 4 F
22	515
23	
24	516
25 26	
20	517
28	
29	518
30	
31	519
32	
33	520
34 25	
36	521
37	
38	522
39	
40	523
41	
42	524
43 44	
44 45	525
46	
47	526
48	
49	527
50	
51	528
52 53	0
55 54	529
55	2_3
56	
57	
58	
59	

60

respectively (Table 4). Conversely, the western genetic cluster had the smallest UDs, with 3.9
km² area for the 50% UD and 31.4 km² area for the 95% UD (Table 4).

A total of 28 individuals met the criteria to be included in both the genetic and social clustering analyses (Table 5). The lone west-central social cluster individual (Y22) was assigned to the western genetic group. This aligned with satellite tag data placing Y22 in the western group as well (Table 5; Wells et al., 2017). For the island social cluster, 55% of those individuals matched with their genetic assignment to the island group. A similar proportion (60%) of the western social cluster showed agreement with their genetic assignments. The largest agreement (83%) between social cluster and satellite tag assignments was with western cluster individuals.

4. DISCUSSION

The Barataria Basin is habitat for common bottlenose dolphin residents with long-term 519 520 site fidelity (some dolphins documented over a 10-year period and across seasons) and fine-scale 521 habitat partitioning. The abundance of dolphins in this estuarine system is one of the largest of 522 any surveyed SEUS BSE [2,071 (95% CI: 1,832–2,309)] (Garrison, Litz & Sinclair, 2020). 523 Evidence that the dolphins inhabiting this basin are separated into distinct groups has been previously presented, based on satellite-telemetry (Wells et al., 2017; Cloyed et al., 2021) and 524 525 genetic data (Rosel et al., 2017). This study provides additional evidence supporting partitions 526 within the basin. Multiple unique social and genetic groups were identified within the studied 527 areas of the Barataria Basin and it is possible that more partitions could be discovered with 528 higher coverage in other parts of the basin, such as the south-eastern and north-central portions. 529 Genetic analysis, with an increased sample size, reinforced the presence of three distinct genetic

3 4	530	groups previously identified by Rosel et al. (2017). The degree of nuclear genetic differentiation
5 6	531	among the three Barataria Basin genetic clusters was similar to that estimated by Rosel et al.
/ 8 9	532	(2017) between the two Barataria groups evaluated in their study. The level of genetic
9 10 11	533	differentiation among these groups was similar to estimates among other dolphin communities of
12 13	534	the SEUS, such as BSE groups within the Indian River Lagoon, Florida (Richards et al., 2013),
14 15	535	as well as between BSE and coastal stocks of the Gulf of Mexico and Atlantic Ocean (Sellas,
16 17 18	536	Wells & Rosel, 2005; Rosel, Hansen & Hohn, 2009, Rosel et al., 2017). This study also
19 20	537	confirmed significant genearching differentiation between dolphins in the Barataria Basin and those
21 22	538	from the adjacent coastal water, as previously revealed by Rosel et al. (2017). Out of the 203
23 24 25	539	dolphins sampled within the Barataric Basin, only seven grouped with the coastal stock in
26 27	540	clustering analysis and had much lower merabership values ($q = 0.54-0.72$) than the overall
28 29	541	average for the WCS ($q = 0.94$). The STRUCTUPE results also indicated low levels of
30 31 32	542	admixture between the Barataria Basin and nears' tor coastal populations.
33 34	543	Using nuclear genetic data, the western genetic curster showed the highest level of
35 36	544	divergence when compared to all other clusters within the Dasin. In fact, estimates of F_{ST} were
37 38 30	545	higher between the western cluster and the other two Barataria Basin clusters than between the
39 40 41	546	WCS and the Barataria island or east-central clusters, demonstrating how genetically distinct the
42 43	547	western group is from other dolphin groups of the same BSE. The western social cluster had the
44 45	548	smallest median group size (Table 1) with high strength and affinity social metrics, further
40 47 48	549	supporting distinction of the western group from the other three social clusters.
49 50	550	Kernel density estimate analysis of the cumulative photo-ID sightings indicated spatial
51 52	551	distinction between the four social clusters with varying degrees of geographic overlap. There
53 54 55	552	was little to no geographic overlap between the western and east-central social clusters (Figure
55 56 57		25
58 59		
צנ		

6). The Barataria Waterway and land formations on the edges of West Champagne Bay separate these two clusters, appearing to serve as a social barrier. The highest degree of geographic overlap was between the island and western social clusters near Grand Isle. The kernel density estimate analysis of the genetic clusters also showed a great amount of geographic overlap near the barrier islands with the majority of the 50% UDs for all three clusters near Grand Isle (Figure 6). The east-central genetic cluster was more widespread than the other clusters, with the 95%UD extending to both the western and eastern portions of the Barataria Basin; however, it is the only group with UDs located near the south-eastern region of the basin. Interestingly, when comparing distributions between the social and genetic groups, the western clusters had very similar geographic ranges between the two analysis methods, unlike any of the other clusters. This could indicate that the dolphins in the western portion of the basin are both socially and genetically more unique than the other groups.

The east-central, western, and island social and genetic clusters identified by this study generally corresponded to the ranging patterns identified from tracking satellite-tagged dolphins in the Barataria Basin (Wells et al., 2017). However, when comparing the social cluster assignments to the satellite telemetry classifications, less than half of the island social cluster individuals aligned with the island satellite telemetry group (Table 5). There was better agreement when comparing the western social cluster, as over 80% of individuals matched with their corresponding satellite telemetry assignments, further supporting the uniqueness of the dolphins in the western portion of the Basin. The low correspondence between the two studies could be the result of a small sample size of satellite-tagged individuals that qualified for the SOCPROG analysis. Additionally, satellite telemetry represents short-term (< 6 months) movements [mean tag duration was 140 days; Wells et al., (2017)] while the SOCPROG clusters

were derived from long-term (10 years) photo-ID sighting records. This temporal difference
between the two methodologies could help explain some of the discrepancies in the satellite
telemetry and SOCPROG cluster assignments and has been observed in other studies when
comparing different sampling methods to assess dolphin movements (e.g. Balmer et al., 2014;

580 Nekolny et al., 2017; Balmer et al., 2021).

The two largest social clusters, the island and the western, totalled 65 and 40 individuals, respectively. Both of these larger clusters displayed high strength of associations, connectedness, and gregariousness, especially when compared with the two smaller clusters (east-central and west-central; Table 1). However, group sizes for individuals of the island and western clusters were smaller than the east-central cluster. Individuals in the east-central cluster were seen in much larger group sizes with looser association; when compared to the other three clusters (Table 1). This suggests that east-central individuals form many loose associations with other Barataria dolphins but have strong associations with only a few individuals to form a social cluster. Bottlenose dolphins in southern Australia have shown a similar pattern, potentially in response to higher prey abundance, where one community is characterized by larger aggregations and loose social bonds, and the other by smaller groups but stronger associations, perhaps as a consequence of having to search for limited prey (Diaz-Aguirre et al., 2019). Association patterns can also be influenced by predatory threats (Heithaus & Dill, 2002; Gowans, Würsig & Karczmarski, 2007). Nearly one-third of captured Barataria dolphins showed some degree of shark bite scars (Zolman E., 2020, unpublished data), supporting the possibility that predation risk could be influencing social structure and habitat use, as seen with dolphins in Sarasota Bay, Florida (Wells, Scott & Irvine, 1987; Wilkinson et al., 2017).

Page 29 of 65

1

2	
2	
2	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
13	
14	
17	
15	
16	
17	
18	
19	
20	
21	
ו∠ רב	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
24	
24	
35	
36	
37	
38	
39	
40	
40	
41	
42	
43	
44	
45	
46	
47	
10	
4ð	
49	
50	
51	
52	
53	
55	
54 55	
55	
56	
57	
58	
59	

60

598 The dendrogram and network analysis statistics compare the social connectivity within 599 and between social clusters. The position of the west-central social cluster in the dendrogram, 600 between the east-central (with which it shares a node) and island clusters (Figure 3), suggests its 601 four members also have some association with the east-central or island community. This is 602 supported by the equal amount of spatial overlap between the west-central UDs with the east-603 central and island UDs (Figure 6). When comparing the network analysis measures, the westcentral cluster had a greater between-class strength value with the island (0.45) cluster compared 604 605 to the east-central (0.03) or western (0.09) clusters (Table 1), suggesting the west-central and 606 island clusters are more strongly associated. The western cluster appears to be the most isolated 607 social cluster based on its position in the dendrogram and low between-class strength values with the other social clusters. Additional surveys are needed to increase the number of individuals 608 609 with 10 or more sightings to elucidate the social structure of the smaller clusters.

Fine-scale habitat partitioning by common bottlenose dolphins within BSEs has been
found elsewhere in the SEUS. Using photo-ID data, Urian et al. (2009) found five discrete
dolphin communities within Tampa Bay, Florida. However, unlike the Barataria Basin social and
genetic clusters, Tampa Bay communities exhibited very little spatial overlap. Dolphins within
the Barataria Basin have spatial cluster patterns more similar to those inhabiting the Moray Firth,
Scotland. There, using photo-ID data, Lusseau et al. (2006) found two communities of dolphins
with differences in associations but overlapping ranges.

Photo-ID data in the present study suggest that all four Barataria Basin social clusters
exhibit spatial overlap around Grand Isle. Some dolphins within the Barataria Basin have been
observed using a specialized foraging strategy ("drilling") during which they presumably burrow
into the substrate (Quigley et al., 2022). Only six individuals observed "drilling" qualified for the

SOCPROG analysis with three from the western cluster, two from the island cluster, and one from the west-central cluster. This behaviour was observed primarily along the north side of Grand Isle and in southern Caminada Bay and could be a driver for the high degree of overlap between the western and island social clusters. Grand Isle began forming around 750 years ago and is one of the most stable Louisiana barrier islands (Torres et al., 2020). Perhaps dolphins from different clusters have shifted their core usage area towards Grand Isle, a preferred area for the "drilling" foraging strategy.

A higher number of social clusters (4) than genetic clusters (3) was identified within the Barataria Basin. Two of the social clusters contained only 3-4 individuals, possibly due to the data restrictions of the cluster analysis requiring 10 or more sightings, only including markrecapture surveys, and a lack of sufficient in the series in the eastern part of the basin. However, social clusters containing very few individuals have been observed in other dolphin studies (Genov et al., 2019; Hawkins et al., 2020). It may of that individuals from the two small Barataria social clusters (east-central and west-central) are part of a larger social group with individuals not included in the analysis. One other explanation for the small number of members of the east-central social cluster is the lack of survey effort in that region. With additional central and eastern surveys, the east-central and west-central clusters will likely increase in sample size.

Other studies of common bottlenose dolphins in the SEUS have revealed discrepancies in the number of social versus genetic clusters within a single habitat, and similar to findings from this study, a higher number of social versus genetic clusters were reported. For example, using photo-ID data, Mazzoil et al. (2008) identified three communities of dolphins within the Indian River Lagoon of Florida, but only two genetic clusters were differentiated by Richards et al. (2013) using microsatellite data. Furthermore, analysis of telemetry and photo-ID data of

dolphins inhabiting Mississippi Sound, Mississippi/Alabama in the northern Gulf of Mexico
(Mullin et al., 2017) identified at least two social groups but microsatellite data supported only a
single population (Vollmer et al., 2021). The fission-fusion nature of dolphin societies might also
explain why more social than genetic groups were found in the Barataria Basin. Connor et al.
(2000) suggested that dolphins need to spread out more to reduce feeding competition, resulting
in multiple social interactions.

If kinship is an important factor in the formation of social bonds within a population, one would expect higher levels of relatedness within social communities than between them. Higher levels of genetic relatedness have been reported for social groups of bottlenose dolphins (*Tursiops* spp.) in other studies (Diaz Agv irre et al., 2019; Chabanne et al., 2021). In this study, two of the four social clusters had large enough sample size to investigate genetic relatedness. Compared to all Barataria samples analysed together as a single group, the western social cluster had significantly higher overall relatedness while the island cluster did not (Supporting Table S5A). This result further supports the uniqueness of the western dolphins. When examining average relatedness within the sexes of both social clusters, the observed average pairwise relatedness was higher for female pairs than male pairs in both clusters, although differences lay within the 2.5% and 97.5% quantiles of the bootstrapped sample (Supporting Table 5B). Tests for sex-biased dispersal based on mean AIc values also did not indicate a significant difference between males and females in the social clusters (Table 3). However, sample sizes for both social clusters were small for the tests (≤ 8 individuals per sex) so the power to detect a difference may have been low. While not significant, the lower levels of relatedness and negative mean AIc values of male dolphins within the BBES social groups may suggest that males within the Barataria Basin are the more dispersive sex, but larger sample sizes are necessary to

comprehensively examine this question. There was also no overall support for sex-biased
dispersal in the genetic clusters except when testing differences in relatedness within the eastcentral cluster. It should be noted that a lack of evidence for sex-biased dispersal inferred from
genetic data has been reported for other common bottlenose dolphin populations in the SEUS
(Sellas, Wells & Rosel, 2005; Rosel, Hansen & Hohn, 2009; Richards et al., 2013; Vollmer &
Rosel, 2017; Vollmer et al., 2021).

Further evidence suggesting movement of male dolphins across social clusters comes from the lower percentage st matching social and genetic assignments for males compared to females. Males had 40% and 50% matching cluster assignments compared to 80% and 60% for females in the western and island cluctors respectively. Females also had higher assignment matches between social and telemetry gours than males. Although the sample size is small, this result supports the hypothesis that dolphin socicic clusters could include males that have dispersed from their natal genetic populations. Fewer matches between the genetic and social assignments could also indicate that dolphins are socializing between different genetic populations but not breeding at rates that would produce panmixia throughout the basin since there is significant genetic differentiation among groups. Longer-term studies of social interactions and additional genetic data from an increased number of individuals will continue to improve our understanding of dolphin interactions within the BBES.

There was also evidence of female philopatry in the matrilineally inherited mtDNA data. Overall estimates of F_{ST} were higher for females than for males ($F_{ST} = 0.100$ and 0.025, respectively). Also, pairwise values of F_{ST} between the western and east-central genetic groups and the east-central and island groups were significantly different from zero, allowing rejection of the null hypothesis of panmixia (Table 2B). Levels of differentiation were, however, not

Page 33 of 65

significant between the western and island clusters. The similarities in mtDNA data for those two clusters could indicate a founder event in which the western population first colonized inshore waters of the Barataria Basin and then a subset of individuals separated from the group and inhabited areas surrounding the barrier islands that formed within the last 750 years. Also, all comparisons among the Barataria Basin genetic clusters using Φ_{ST} were not significant. Measurements of $\Phi_{\rm ST}$ use haplotype frequencies and genetic distance information combined, whereas F_{ST} estimates use haplotype frequency information only. As populations diverge, frequency differences are expected to emerge prior to divergence of the haplotypes through mutation and drift. The low amount of sequence variability between mtDNA haplotypes of dolphins within the basin could be due to historical colonization of the BSE by a single population that then diverged into multiple genetic groups. Low mtDNA diversity has been reported among other BSE populations of *T. truncatus* and, as a result, mtDNA data can have lower statistical power needed to detect genetic structure within these communities (Sellas, Wells & Rosel, 2005; Litz et al., 2012; Richards et al., 2013).

Combining social and genetic analyses in this study has further demonstrated that dolphin population structure is complex, and both analytical approaches can provide unique and valuable insights. Overall, genetic analyses can differentiate communities of dolphins established through long-term (generational) preferential breeding behavior. In contrast, associations can be more fluid and may change in response to habitat or predator/prey changes, and strong associations can be formed between a mix of related and unrelated individuals. Combining the two data types can provide insights on different timescales into dolphin population structure versus using one technique alone. Our results suggest underlying social and relatedness groupings of common bottlenose dolphins within the Barataria Basin, coupled with evidence for multiple

demographically independent groups that are unique with respect to dolphin populations in
coastal waters (i.e. the WCS). Furthermore, it is likely that additional social groups, and possibly
genetically distinct groups, occupy the neighbouring estuarine habitats of the Barataria Basin that
have yet to be fully investigated. Additional genetic sampling and photo-ID efforts in the southeastern portion of the basin would improve our understanding of the social and genetic structure
throughout the entire basin, and future research should aim to understand habitat and/or
behavioral differences that could be drivers of differentiation.

Understanding the unique characteristics of these groups, such as social bonds, feeding behavior, prey preference, and habitat specialization, and also the most pressing threats for the distinct communities may help managers to design more effective mitigation or restoration plans, and to monitor their effectiveness to adapt as needed. For example, the MBSD project is intended to divert sediment and nutrients from the Mississippi River to the mid-Barataria Basin to reduce land loss and create and maintain wetlands. The sediment diversion will result in large volumes of fresh water moving into the basin (U.S. Army Corps of Engineers, 2017). Models predict a 34% decrease in dolphin survival for a given year of diversion operations, with dolphins occupying the western and central portions of the Barataria Basin likely to experience the greatest impacts (Garrison, Litz & Sinclair, 2020). This will potentially compound the significant health effects suffered by BBES dolphins as a result of the DWH oil spill (Schwacke et al., 2014; Lane et al., 2015; Smith et al., 2017). The current study shows discrete social and genetic groups in the western and central regions, which could be severely impacted if these regions are subjected to prolonged durations (multiple months) of fresh water. The information on social structure and evidence for demographically independent groups can aid decisions on management, mitigation, and/or conservation projects, and allow them to be designed to best

2		
3 4	736	address the unique threats to given groups of animals, rather than attempting to apply a broad-
5 6	737	stroke approach that may not maintain the complex structure and ecosystem roles of the dolphins
/ 8 0	738	in the Barataria Basin.
9 10 11	739	
12 13	740	ACKNOWLEDGEMENTS
14 15	741	
16 17 18	742	We thank the Office of Naval Research Marine Mammal Biology Program for providing
19 20	743	support for T. Speakman under award number N000141712868. We would like to thank Jeff
21 22	744	Adams for his assistance with data queries, Kyle Massie and Tilen Genov for helping with
23 24 25	745	SOCPROG, Brittany Novick for helping with SOCPROG and ArcGIS, Jaime Thompson for the
26 27	746	development of finFindR, and Suzanne Lane, Rachel Melancon, Jen Sinclair, Angie Stiles, John
28 29	747	Venturella, Errol Ronje, Annie Gorgone, Tony Martinez, and Mandy Tumlin for their assistance
30 31 32	748	with fieldwork and/or photo analysis. We would also like to express our gratitude to C. Grace
32 33 34	749	Sprehn for her assistance in the genetics laboratory. Photo-identification surveys and photo-
35 36	750	analysis, biopsy collection, and genetic data collected from 2010-2015 were part of the DWH
37 38	751	Natural Resources Damage Assessment. This research was conducted under MMPA Permit
39 40 41	752	Numbers 14450 and 18786. The scientific results and conclusions, as well as any views or
42 43	753	opinions expressed herein, are those of the author(s) and do not necessarily reflect those of
44 45	754	NOAA or the Department of Commerce. This is National Marine Mammal Foundation
46 47 48	755	Contribution #307 to peer-reviewed scientific literature.
40 49		
50		
51 52		
53		
54		

2 3 4	757	REFERENCES
5 6	758	
7 8 0	759	Adams, J.D., Speakman, T.R., Zolman, E.S. & Schwacke, L.H. (2006). Automating image
9 10 11	760	matching, cataloging, and analysis for photo-identification research. Aquatic Mammals,
12 13	761	32(2), 374-384. https://doi.org/10.1578/AM.32.3.2006.374
14 15 16	762	Anderson, E.C. & Dunham, K.K. (2008). The influence of family groups on inferences made
10 17 18	763	with the program Structure. <i>Molecular Ecology Resources</i> , 8(6), 1219-1229.
19 20	764	https://doi.org/10.1111/j.1755-0998.2008.02355.x
21 22	765	Balmer, B.C., Wells, R.S., Schwacke, L.H., Schwacke, J.H., Danielson, B., George, R.C. et al.
23 24 25	766	(2014). Integrating multiple techniques to identify stock boundaries of common
26 27	767	bottlenose dolphins (Tursiops truncatus). Aquatic Conservation: Marine and Freshwater
28 29	768	Ecosystems, 24(4), 511-521. https://doi.org/10.1002/aqc.2357
30 31 32	769	Balmer, B.C., Ylitalo, G.M., McGeorge, L.E., Baugh, K.A., Boyd, D., Mullin, K.D. et al. (2015).
32 33 34	770	Persistent organic pollutants (POPs) in blubber of common bottlenose dolphins (Tursiops
35 36	771	truncatus) along the northern Gulf of Mexico coast, USA. Science of the Total
37 38	772	Environment, 527, 306-312. https://doi.org/10.1016/j.scitotenv.2015.05.016
39 40 41	773	Balmer, B., Watwood, S., Quigley, B., Speakman, T., Barry, K., Mullin, K. et al. (2019).
42 43	774	Common bottlenose dolphin (Tursiops truncatus) abundance and distribution patterns in
44 45	775	St Andrew Bay, Florida, USA. Aquatic Conservation: Marine and Freshwater
46 47 49	776	Ecosystems, 29(3), 486-498. https://doi.org/10.1002/aqc.3001
49 50	777	Balmer, B., McCulloch, S., Speakman, T., Hansen, L., Foster, J., McFee, W. et al. (2021).
51 52	778	Comparison of short-term satellite telemetry and long-term photographic-identification
53 54	779	for assessing ranging patterns of individual common bottlenose dolphins (Tursiops
55 56 57		35
58 59		
60		http://mc.manuscriptcentral.com/aqc

1 2		
2 3 4	780	truncatus) in the waters around Charleston, South Carolina, USA. Aquatic Mammals, 47,
5 6	781	355-361.
7 8 9	782	Baltz, D.M., Rakocinski, C. & Fleeger, J.W. (1993). Microhabitat use by marsh-edge fishes
10 11	783	in a Louisiana estuary. Environmental Biology of Fishes, 36, 109–126.
12 13	784	https://doi.org/10.1007/bf00002790
14 15 16	785	Besnier, F. & Glover, K.A. (2013). ParallelStructure: A R package to distribute parallel runs of
10 17 18	786	the population genetics program STRUCTURE on multi-core computers. PLOS ONE,
19 20	787	8(7), e70651. https://doi.org/10.1371/journal.pone.0070651
21 22	788	Brownstein, M.J., Carpten, J.D. & Smith, J.R. (1996). Modulation of non-templated nucleotide
23 24 25	789	addition by <i>Taq</i> DNA polymerase: Primer modifications that facilitate genotyping.
23 26 27 28 29 30 31 32	790	Biotechniques, 20, 1004-1010. https://doi.org/10.2144/96206st01
	791	Chabanne, D.B.H., Allen, S.J., Sherwin, W.B., Finn, H.C. & Krützen, M. (2021).
	792	Inconsistency between socio-spatial and genetic structure in a coastal dolphin population.
33 34	793	Frontiers in Marine Science, 7, 1217. https://doi.org/10.3389/fmars.2020.617540
35 36	794	Cloyed, C.S., Balmer, B.C., Schwacke, L.H., Takeshita, R., Hohn, A., Wells, R.S. et al. (2021).
37 38	795	Linking morbillivirus exposure to individual habitat use of common bottlenose dolphins
39 40 41	796	(Tursiops truncatus) between geographically different sites. Journal of Animal
42 43	797	Ecology, 90(5), 1191-1204. https://doi.org/10.1111/1365-2656.13446
44 45	798	Conner, W.H. & Day, Jr., J.W. (eds). (1987). The ecology of Barataria Basin, Louisiana: An
46 47 48	799	estuarine profile. U.S. Fish and Wildlife Service, Biological Report 85 (7.13).
49 50	800	Connor, R.C., Wells, R.S., Mann, J. & Read, A.J. (2000). The bottlenose dolphin: Social
51 52		
53 54 55		
56 57		36
58 59		
60		http://mc.manuscriptcentral.com/aqc
2 3 4	801	relationships in a fission-fusion society. In J. Mann, R.C. Connor, P.L. Tyack, and H.
----------------	-----	--
5 6	802	Whitehead (Eds.). Cetacean Societies: Field Studies of Dolphins and Whales. Chicago,
7 8	803	IL: University of Chicago Press, pp. 91-126.
9 10 11	804	Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012). jModelTest 2: More models, new
12 13	805	heuristics and parallel computing. Nature Methods, 9(8), 772.
14 15 16	806	https://doi.org/10.1038/nmeth.2109
16 17 18	807	Diaz-Aguirre, F., Parra, G.J., Passadore, C. & Möller, L. (2019). Genetic relatedness delineates
19 20	808	the social structure of couthern Australian bottlenose dolphins. Behavioral
21 22	809	Ecology, 30(4), 948-959. https://doi.org/10.1093/beheco/arz033
23 24 25	810	Earl, D.A. & vonHoldt, B.M. (2012). STRUCTURE HARVESTER: A website and program for
26 27	811	visualizing STRUCTURE output and implementing the Evanno method. Conservation
28 29	812	Genetics Resources, 4, 359-361. https://doi.org/10.1007/s12686-011-9548-7
30 31 32	813	Eisenberg, J.F., Muckenhirn, N.A. & Rudran, R. (1972). The relation between ecology and social
33 34	814	structure in primates. <i>Science</i> , 176, 863-874.
35 36	815	https://doi.org/10.1126/science.176.4037.863
37 38 30	816	Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals
39 40 41	817	using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611-
42 43	818	2620. https://doi.org/10.1111/j.1365-294x.2005.02553.x
44 45	819	Excoffier, L. & Lischer, H.E.L. (2010). Arlequin suite ver 3.5: A new series of programs to
46 47 48	820	perform population genetics analyses under Linux and Windows. Molecular Ecology
49 50	821	Resources, 10(3), 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
51 52	822	Favre, L., Balloux, F., Goudet, J. & Perrin, N. (1997). Female-biased dispersal in the
53 54 55		
56 57		37
58 59		

2 3	873	monogenous memmel <i>Crocidura russula</i> : Evidence from field date and microsetellite
4 5	025	monogamous mammar crociaura russuia. Evidence nom neia data and microsatemic
6 7	824	patterns. Proceedings of the Royal Society of London. Series B: Biological
, 8 9	825	Sciences, 264(1378), 127-132. https://doi.org/10.1098/rspb.1997.0019
10 11	826	Garrison, L.P, Litz, J. & Sinclair, C. (2020). Predicting the effects of low salinity associated with
12 13	827	the MBSD project on resident common bottlenose dolphins (Tursiops truncatus) in
14 15	828	Barataria Bay, LA. NOAA Technical Memorandum NOAA NMFS-SEFSC-748.
16 17 18	829	Genov, T., Centrih, T., Kotnjek, P. & Hace, A. (2019). Behavioural and temporal partitioning of
19 20	830	dolphin social groups in the northern Adriatic Sea. Marine Biology, 166(1), 1-14.
21 22	831	https://doi.org/10.1007/2003227-018-3450-8
23 24	832	Ginsberg, J.R. & Young, T.P. (1992) . Mer suring association between individuals or groups in
25 26 27	833	behavioural studies. Animal Behavior, 44, 377-379. https://doi.org/10.1016/0003-
28 29	834	3472(92)90042-8_
30 31	835	Goudet, J. (1995). FSTAT (version 1.2): A computer program to calculate F-statistics. Journal of
32 33 24	836	Heredity, 86(6), 485-486. https://doi.org/10.1093/oxfordjournals.jhered.a111627
34 35 36	837	Goudet, J., Perrin, N. & Waser, P. (2002). Tests for sex-biased dispersal using bi-parentally
37 38	838	inherited genetic markers. Molecular Ecology, 11(6), 1103-1114.
39 40	839	https://doi.org/10.1046/j.1365-294x.2002.01496.x
41 42 43	840	Goudet, J. (2003). Fstat (ver. 2.9.4), a program to estimate and test population genetics
44 45	841	parameters. Updated from Goudet [1995].
46 47	842	http://www2.unil.ch/popgen/softwares/fstat.htm.
48 49 50	843	Gowans, S., Würsig, B. & Karczmarski, L. (2007). The social structure and strategies of
51 52	844	delphinids: Predictions based on an ecological framework. Advances in Marine Biology,
53 54	845	53, 195-294. https://doi.org/10.1016/s0065-2881(07)53003-8
55 56		38
57 58		
59		

846	Hayes, L.D. & Schradin, C. (2017). Long-term field studies of mammals: What the short-term
847	study cannot tell us. Journal of Mammalogy, 98, 600-602.
848	https://doi.org/10.1093/jmammal/gyx027
849	Hawkins, E.R., Pogson-Manning, L., Jaehnichen, C. & Meager, J.J. (2020). Social dynamics and
850	sexual segregation of Australian humpback dolphins (Sousa sahulensis) in Moreton Bay,
851	Queensland. Marine Mammal Science, 36(2), 500-521.
852	https://doi.org/10.1111/mms.12657
853	Heithaus, M.R. & Dill, L.M. (2002). Food availability and tiger shark predation risk influence
854	bottlenose dolphin habite: use. Ecology, 83(2), 480-491. https://doi.org/10.1890/0012-
855	658(2002)083[0480:faatsp]2 ^c . co:).
856	Holm, S. (1979). A simple sequentially ejective multiple test procedure. Scandinavian Journal
857	of Statistics, 6, 65-70.
858	Hoppitt, W. & Farine, D. (2018). Association indice for quantifying social relationships: How
859	to deal with missing observations of individuals or groups. Animal Behaviour, 136, 227-
860	238. https://doi.org/10.1016/j.anbehav.2017.08.029
861	Horne, J.S. & Garton, E.O. (2006). Likelihood cross-validation versus least squares cross-
862	validation for choosing the smoothing parameter in kernel home-range analysis. Journal
863	of Wildlife Management, 70(3), 641-648.
864	Ingram, S.N. & Rogan, E. (2002). Identifying critical areas and habitat preferences of
865	bottlenose dolphins Tursiops truncatus. Marine Ecology Progress Series, 244, 247-255.
866	https://doi.org/10.3354/meps244247
867	Jakobsson, M. & Rosenberg, N.A. (2007). CLUMPP: A cluster matching and permutation
	39
	http://mc.manuscriptcentral.com/aqc
	 8446 847 848 849 850 851 852 853 854 855 856 861 862 863 864 865 866 867

Page 41 of 65

1 2		
- 3 4	868	program for dealing with label switching and multimodality in analysis of population
5 6	869	structure. Bioinformatics, 23, 1801-1806. https://doi.org/10.1093/bioinformatics/btm232
7 8	870	Kie, J.G. (2013). A rule-based ad hoc method for selecting a bandwidth in kernel home-range
9 10 11	871	analyses. Animal Biotelemetry, 1(1), 13.
12 13	872	Lane, S.M., Smith, C.R., Mitchell, J., Balmer, B.C., Barry, K.P., McDonald, T. et al. (2015).
14 15	873	Reproductive outcome and survival of common bottlenose dolphins sampled in Baratar
16 17 19	874	Bay, Louisiana, USA, following the Deepwater Horizon oil spill. Proceedings of the
19 20	875	Royal Society B-Biological Sciences, 282, 20151944.
21 22	876	http://dx.doi.org/10.1098/rspb.2015.1944
23 24	877	Li, C.C., Weeks, D.E. & Chakravarti, A. (1993). Similarity of DNA fingerprints due to chance
25 26 27	878	and relatedness. Human Heredity, 43, 45-52. https://doi.org/10.1159/000154113
28 29	879	Litz, J.A., Hughes, C.R., Garrison, L.P., Fieber, L.A. & Rosel, P.E. (2012). Genetic structure
30 31	880	of common bottlenose dolphins (Tursiops truncatus) inhabiting adjacent South Florida
32 33 34	881	estuaries - Biscayne Bay and Florida Bay. Journal of Cetacean Research and
35 36	882	Management, 12(1), 107-117.
37 38	883	Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E. & Dawson, S.M. (2003).
39 40 41	884	The bottlenose dolphin community of Doubtful Sound features a large proportion of
42 43	885	long-lasting associations. Behavioral Ecology and Sociobiology, 54, 396-405.
44 45	886	https://doi.org/10.1007/s00265-003-0651-y
46 47	887	Lusseau, D., Williams, R., Wilson, B., Grellier, K., Barton, T.R., Hammond, P.S. et al. (2004).
48 49 50	888	Parallel influence of climate on the behaviour of Pacific killer whales and Atlantic
51 52	889	bottlenose dolphins. Ecology Letters, 7, 1068-1076. https://doi.org/10.1111/j.1461-
53 54	890	0248.2004.00669.x
55 56 57		
57 58		

60

http://mc.manuscriptcentral.com/aqc

3 4	891	Lusseau, D., Wilson, B., Hammond, P.S., Grellier, K., Durban, J.W., Parsons, K.M. et al.
5 6 7	892	(2006). Quantifying the influence of sociality on population structure in bottlenose
/ 8 9	893	dolphins. Journal of Animal Ecology, 75, 14-24. https://doi.org/10.1111/j.1365-
10 11	894	2656.2005.01013.x
12 13	895	Lynch, M. & Ritland, K. (1999). Estimation of pairwise relatedness with molecular
14 15 16	896	markers. Genetics, 152(4), 1753-1766.
16 17 18	897	MacLeod, C. (2013). An Introduction to using GIS in marine biology: Investigating home ranges
19 20	898	of individual animals (supplementary workbook 4). Glasgow, UK. Pictish Beast
21 22	899	Publications.
23 24 25	900	Mazzoil, M., Reif, J.S., Youngbluth, M., Murdoch, M.E., Bechdel, S.E., Howells, E. et al.
26 27	901	(2008). Home ranges of bottlenose dolphins (Tursiops truncatus) in the Indian River
28 29	902	Lagoon, Florida: Environmental correlates and implications for management strategies.
30 31 32	903	EcoHealth, 5(3), 278-288. https://doi.org/10.1007/s10393-008-0194-9
33 34	904	McDonald, T.L., Hornsby, F.E., Speakman, T.R., Zolman, E.S., Mullin, K.D., Sinclair, C. et
35 36	905	al. (2017). Survival, density, and abundance of common bottlenose dolphins in Barataria
37 38 39	906	Bay following the <i>Deepwater Horizon</i> oil spill. <i>Endangered Species Research</i> , 33, 69-82.
40 41	907	https://doi.org/10.3354/esr00806
42 43	908	Melancon, R.A.S., Lane, S., Speakman, T., Hart, L.B., Sinclair, C., Adams, J. et al. (2011).
44 45 46	909	Photo-identification Field and Laboratory Protocols Utilizing FinBase Version 2. NOAA
40 47 48	910	Technical Memorandum NMFS-SEFSC-627. 46 p.
49 50	911	Michel, J., Owens, E.H., Zengel, S., Graham, A., Nixon, Z., Allard, T. et al. (2013). Extent and
51 52	912	degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA. PLOS
55 55	913	ONE, 8, e65087. https://doi.org/10.1371/journal.pone.0065087
56 57		41
58		

1 2		
3 4	914	Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) "Creating the CIPRES Science Gateway for
5 6	915	inference of large phylogenetic trees" in Proceedings of the Gateway Computing
7 8	916	Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1-8.
9 10 11	917	Milligan, B.G. (2003). Maximum-likelihood estimation of relatedness. Genetics, 163(3), 1153-
12 13	918	1167.
14 15	919	Möller, L.M. & Beheregaray, L.B. (2004). Genetic evidence for sex-biased dispersal in resident
16 17 18	920	bottlenose dolphins (Tursiops aduncus). Molecular Ecology, 13, 1607-1612.
19 20	921	https://doi.org/10.1111/j.1365-294x.2004.02137.x_
21 22	922	Mossman, C.A. & Waser, P.M. (1999). Genetic detection of sex-biased dispersal. Molecular
23 24 25	923	<i>Ecology</i> , 8(6), 1063-1067.
26 27	924	Mullin, K.D., McDonald, T., Wells, R.S., Palmer, B.C., Speakman, T., Sinclair, C. et al.
28 29	925	(2017). Density, abundance, survival, ar a ranging patterns of common bottlenose
30 31 22	926	dolphins (Tursiops truncatus) in Mississippi Scand following the Deepwater Horizon oil
32 33 34	927	spill. PLOS ONE, 12(10), e0186265. https://axi.or_/10.1371/journal.pone.0186265
35 36	928	Mullin, K.D., Barry, K., McDonald, T., Morey, J., Quigley, B, Ronje, E. et al. (2018).
37 38	929	Assessment of the overlap of Terrebonne-Timbalier Bay and Barataria Bay common
39 40 41	930	bottlenose dolphin (Tursiops truncatus) stocks based on photo-identification of individual
42 43	931	dolphins. NOAA Technical Memorandum NMFS-SEFSC-729. 29 p. https://doi.org/
44 45	932	10.25923/8g4y-dg29.
46 47 48	933	Nei, M. (1987). Molecular Evolutionary Genetics. New York, NY: Columbia University Press.
48 49 50	934	Nekolny, S.R., Denny, M., Biedenbach, G., Howells, E.M., Mazzoil, M., Durden, W.N. et al.
51 52		
53 54 55		
56 57		42
58 59		
60		http://mc.manuscriptcentral.com/aqc

60

2		
4	935	(2017). Effects of study area size on home range estimates of common bottlenose
5 6	936	dolphins Tursiops truncatus. Current Zoology, 63(6), 693-701.
/ 8 0	937	https://doi.org/10.1093/cz/zox049
9 10 11	938	Newman, M.E.J. (2004). Detecting community structure in networks. The European Physical
12 13	939	Journal B: Condensed Matter and Complex Systems, 38, 321–330.
14 15	940	https://doi.org/10.1140/epjb/e2004-00124-y
16 17	941	Park, S.D.E. (2002). Trypanotolerance in West African cattle and the population genetic effects
18 19 20	942	of selection. PhD dissertation, Trinity College, Dublin, Ireland. 254 p.
21 22	943	Peakall, R. and Smouse, P.E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic
23 24	944	software for teaching and research - an update. Bioinformatics, 28, 2537–2539.
25 26 27	945	https://doi.org/10.1093/bioinformatics/bts460
27 28 29	946	Pew, J., Muir, P.H., Wang, J. & Frasier, T.R. (2015). related: An R package for analysing
30 31	947	pairwise relatedness from codominant molecular markers. Molecular Ecology
32 33	948	Resources, 15(3), 557-561. https://doi.org/10.1111/1755-0998.12323
34 35 26	949	Phillips, K.P., Mortimer, J.A., Jolliffe, K.G., Jorgensen, T.H. & Richardson, D.S. (2014).
37 38	950	Molecular techniques reveal cryptic life history and demographic processes of a critically
39 40	951	endangered marine turtle. Journal of Experimental Marine Biology and Ecology, 455, 29-
41 42	952	37 https://doi.org/10.1016/i iembe 2014.02.012
43 44	953	Pollock K H (1982) A capture-recapture design robust to unequal probability of capture <i>The</i>
45 46 47	954	Iournal of Wildlife Management 46(3) 752-757 https://doi.org/10.2307/3808568
48 49		$\frac{1}{10000000000000000000000000000000000$
50 51	955	Pritchard, J.K., Stephens, M. & Donnelly, P. (2000). Inference of population structure using
52	956	multilocus genotype data. Genetics, 155, 945-959.
53 54	957	Queller, D.C. & Goodnight, K.F. (1989). Estimating relatedness using genetic markers.
55 56		43
58		
72		

http://mc.manuscriptcentral.com/aqc

59 60		http://mc.manuscriptcentral.com/aqc
55 56 57 58		44
52 53 54		
49 50 51	978	Rosel, P.E., France, S.C., Wang, J.Y. & Kocher, T.D. (1999). Genetic structure of harbour
40 47 48	977	https://doi.org/10.1007/BF00349552
44 45 46	976	common dolphins (genus Delphinus). Marine Biology, 119(2), 159-167.
42 43	975	Rosel, P.E., Dizon, A.E. & Heyning, J.E. (1994). Genetic analysis of sympatric morphotypes of
39 40 41	974	Ecology Resources, 12(5), 873-884. https://doi.org/10.1111/j.1755-0998.2012.03156.x
37 38	973	Bayesian clustering algorithms in population genetic structure analysis. Molecular
34 35 36	972	Rodríguez-Ramilo, S.T. & Wang, J. (2012). The effect of close relatives on unsupervised
32 33 34	971	States. Journal of Heredity, 104, 765–778. https://doi.org/10.1093/jhered/est070_
30 31	970	Patterns of population structure for inshore bottlenose dolphins along the eastern United
28 29	969	Richards, V.P., Greig, T.W., Fair, P.A., McCulloch, S.D., Politz, C., Natoli, A. et al. (2013)
25 26 27	968	Statistical Computing, Vienna, Austria. https://www.R-project.org/
23 24	967	R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
20 21 22	966	79-3-447
18 19 20	965	organization. Canadian Journal of Zoology, 79(3), 447-456. https://doi.org/10.1139/cjz-
16 17	964	dolphins (Tursiops truncatus) in the Cedar Keys, Florida: Insights into social
14 15	963	Quintana-Rizzo, E. & Wells, R.S. (2001). Resighting and association patterns of bottlenose
11 12 13	962	48(2), 159-166. https://doi.org/10.1578/AM.48.2.2022.159
9 10	961	dolphins (Tursiops truncatus) in Barataria Basin, Louisiana, USA. Aquatic Mammals,
7 8	960	al. (2022). Observations of a benthic foraging behavior used by common bottlenose
- 5 6	959	Quigley, B.M., Speakman, T.R., Balmer, B.C., Europe, H.M., Gorgone, A.M., Rowles, T.K. et
2 3	958	Evolution, 43, 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x

2		
3 4	979	porpoise Phocoena phocoena populations in the northwest Atlantic based on
5 6	980	mitochondrial and nuclear markers. Molecular Ecology, 8, S41-S54.
7 8	981	https://doi.org/10.1046/j.1365-294X.1999.00758.x
9 10	982	Rosel, P.E. (2003). PCR-based sex determination in Odontocete cetaceans. Conservation
11 12 13	983	Genetics, 4(5), 647-649. https://doi.org/10.1023/A:1025666212967
14 15	984	Rosel, P.E., Hansen, L. & Hohn, A.A. (2009). Restricted dispersal in a continuously distributed
16 17	985	marine species: Common bottlenose dolphins <i>Tursions truncatus</i> in coastal waters of the
18 19	986	western North Atle in <i>Molecular Biology</i> 18(24) 5030–5045
20 21	0.97	https://doi.org/10.1111/j.1265.204V.2000.04412.x
22 23	967	hups.//doi.org/10.1111/, 2.575-294X.2009.04413.x
24 25	988	Rosel, P.E., Mullin, K.D., Garrison, J., Schwacke, L., Adams, J., Balmer, B. et al. (2011).
26 27	989	Photo-identification Capture–Mark–Recapture Techniques for Estimating Abundance of
28 29	990	Bay, Sound, and Estuary Populations of Bottlenose Dolphins along the U.S. East Coast
30 31	991	and Gulf of Mexico: A Workshop Report. NOAA Technical Memorandum NMFS-
32 33	992	SEFSC-621. 30 p.
34 35 36	993	Rosel, P.E., Wilcox, L.A., Sinclair, C., Speakman, T.R., Tumlin, M.C., Litz, J.A. et al. (2017).
37 38	994	Genetic assignment to stock of stranded common bottlenose dolphins in southeastern
39 40	995	Louisiana after the <i>Deepwater Horizon</i> oil spill. <i>Endangered Species Research</i> , 33, 221-
41 42		
42 43	996	234. https://doi.org/10.3354/esr00780
44 45	997	Rousset, F. (2008). GENEPOP'007: A complete re-implementation of the GENEPOP software
46 47	998	for Windows and Linux. Molecular Ecology Resources, 8(1), 103-106.
48 49	999	https://doi.org/10.1111/j.1471-8286.2007.01931.x
50 51 52	1000	RStudio Team. (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA
53 54	1001	URL http://www.rstudio.com/
55		
57		45
58		

2 3	1002	Schradin, C. & Hayes, L.D. (2017). A synopsis of long-term field studies of mammals:
4 5 6	1003	Achievements, future directions, and some advice. Journal of Mammalogy, 98, 670-677.
7 8	1004	https://doi.org/10.1093/jmammal/gyx031
9 10 11	1005	Schwacke, L.H., Smith, C.R., Townsend, F.I., Wells, R.S., Hart, L.B., Balmer, B.C. et al.
12 13	1006	(2014) Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay,
14 15	1007	Louisiana, following the Deepwater Horizon oil spill. Environmental Science and
16 17 18	1008	Technology, 48, 93-103. https://doi.org/10.1021/es403610f
19 20	1009	Sellas, A.B., Wells, R.S. & Rosel, P.E. (2005). Mitochondrial and nuclear DNA analyses
21 22	1010	reveal fine scale geographic structure in bottlenose dolphins (Tursiops truncatus) in the
23 24 25	1011	Gulf of Mexico. Conservation Genetics, 6(5), 715-728.
26 27	1012	https://doi.org/10.1007/s10592-005-9031-7
28 29	1013	Sinclair, C., Sinclair, J., Zolman, E.S., Martinez, A., Balmer, B. & Barry, K.P (2015). Remote
30 31 32	1014	biopsy sampling field procedures for cetaceans used during the Natural Resource
33 34	1015	Damage Assessment of the MSC252 Deepwater Horizon oil spill. NOAA Technical
35 36	1016	Memorandum NMFS-SEFSC-670. 28 p.
37 38 30	1017	Smith, C.R., Hart, L.B., Townsend, F.I., Zolman, E.S., Wells, R.S., Quigley, B. et al. (2017).
39 40 41	1018	The slow recovery of Barataria Bay dolphin health in the years following the Deepwater
42 43	1019	Horizon oil spill (2013-2014), with evidence of persistent lung disease and impaired
44 45	1020	stress response. Endangered Species Research, 33, 127-142.
46 47 48	1021	https://doi.org/10.3354/esr00778
49 50	1022	Smolker, R.A., Richards, A.F., Connor, R.C. & Pepper, J. (1992). Sex differences in patterns of
51 52	1023	association among Indian Ocean bottlenose dolphins. Behaviour, 123, 38-69.
53 54 55	1024	Speakman, T.R., Lane, S.M., Schwacke, L.H., Fair, P.A. & Zolman, E.S. (2010). Mark-recapture
56 57		46
58 59		
60		http://mc.manuscriptcentral.com/aqc

estimates of seasonal abundance and survivorship for bottlenose dolphins (Tursiops

truncatus) near Charleston, South Carolina, USA. Journal of Cetacean Research and

Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control

region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and

Evolution, 10(3), 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Thompson, J.W., Zero, V.H., Schwacke, L.S., Speakman, T.R., Quigley, B.M., Morey, J.S. et al.

fins using residual convolutional neural networks. Marine Mammal Science.

Torres, J., Kulp, M., FitzGerald, D., Georgi Ju, I. & Lepper, K. (2020). Geomorphic and

Geology, 430, 106341. https://doi.org/10.1015/j.margeo.2020.106341

Urian, K.W., Hofmann, S., Wells, R.S. & Read, A.J. (2007). Fine-scale population structure

Science, 25(3), 619-638. https://doi.org/10.1111/j.1748-7692.2009.00284.x

Urian, K.W., Waples, D.M., Tyson, R.B., Hodge, L.E. & Read, A.J. (2014). Abundance of

U.S. Army Corps of Engineers. (2017). Mid-Barataria Sediment Diversion (MBSD)

of bottlenose dolphins (Tursiops truncatus) in Tampa Pay, Florida. Marine Mammal

bottlenose dolphins (*Tursiops truncatus*) in estuarine and near-shore waters of North

Carolina, USA. Journal of the North Carolina Academy of Science, 129, 165–171.

(2021). *finFindR*: Automated recognition and identification of marine mammal dorsal

temporal evolution of a Mississippi delt. flanking barrier island: Grand Isle, LA. Marine

Management, 11(2), 153-162.

https://doi.org/10.1111/mms.12.84

https://doi.org/10.7572/2167-5880-129.4.165

2 3 4	1025
5 6	1026
7 8	1027
9 10	1028
11 12 13	1029
13 14 15	1030
16 17	1031
18 19	1032
20 21	1033
22 23 24	1034
24 25 26	1025
27 28	1035
29 30	1030
31 32	1037
33 34 35	1038
36 37	1039
38 39	1040
40 41	1041
42 43	1042
44 45 46	1043
47 48	1044
49 50	1045
51 52	
53 54 55	
56 57	
58 59	

60

1

http://mc.manuscriptcentral.com/aqc

1 2		
2 3 4	1046	Environmental Impact Statement. Available at:
5 6	1047	https://www.mvn.usace.army.mil/Missions/Regulatory/Permits/Mid-Barataria-Sediment-
7 8	1048	Diversion-EIS/ [Accessed 10 March 2021]
9 10 11	1049	USEPA. (1999). Ecological condition of estuaries in the Gulf of Mexico. EPA 620-R-98-004.
12 13	1050	U.S. Environmental Protection Agency, Office of Research and Development, National
14 15	1051	Health and Environmental Effects Research Laboratory, Gulf Ecology Division, Gulf
16 17 19	1052	Breeze, Florida.
19 20	1053	Van Oosterhout, C., Hutchinson, W.F., Wills, D.P. & Shipley, P. (2004). MICRO-CHECKER:
21 22	1054	Software for identifying and correcting genotyping errors in microsatellite
23 24	1055	data. Molecular Ecology Notes, 4(3), 535-538. https://doi.org/10.1111/j.1471-
25 26 27	1056	8286.2004.00684.x
28 29 30 31 32 33 34	1057	Vollmer, N.L., Viricel, A., Wilcox, L., Moore, M.K. & Rosel, P.E. (2011). The occurrence of
	1058	mtDNA heteroplasmy in multiple cetacean species. Current Genetics, 57, 115–131.
	1059	https://doi.org/10.1007/s00294-010-0331-1
34 35 36	1060	Vollmer, N.L. & Rosel, P.E. (2013). A review of common bottlenose dolphins (Tursiops
37 38	1061	truncatus truncatus) in the northern Gulf of Mexico: Population biology, potential threats
39 40	1062	and management. Southeastern Naturalist, 12, 1-43.
41 42 43	1063	https://doi.org/10.1656/058.012.m601
44 45	1064	Vollmer, N.L. & Rosel, P.E. (2017). Fine-scale population structure of common bottlenose
46 47	1065	dolphins (Tursiops truncatus) in offshore and coastal waters of the US Gulf of
48 49 50	1066	Mexico. Marine Biology, 164(8), 160. https://doi.org/10.1007/s00227-017-3186-x
50 51 52	1067	Vollmer, N.L., Rosel, P.E., Mullin, K.D., Schwacke, L.H., Garrison, L.P., Balmer, B.C., et
53 54		
55 56		48
57 58		
59 60		http://mc.manuscriptcentral.com/aqc

3 4	1068	al. (2021). Assessing common bottlenose dolphin (Tursiops truncatus) population
5 6	1069	structure in Mississippi Sound and coastal waters of the northcentral Gulf of Mexico.
7 8 0	1070	Aquatic Conservation: Marine and Freshwater Ecosystems, 31(10), 2951-2966.
9 10 11	1071	https://doi.org/10.1002/aqc.3668.
12 13	1072	Waits, L.P., Luikart, G. & Taberlet, P. (2001). Estimating the probability of identity among
14 15	1073	genotypes in natural populations: Cautions and guidelines. Molecular Ecology, 10(1),
16 17 18	1074	249-256. https://doi.org/10.1046/j.1365-294x.2001.01185.x
19 20	1075	Wang, J. (2002). An estimator for pairwise relatedness using molecular markers. Genetics,
21 22	1076	160(3), 1203-1215.
23 24 25	1077	Wang, J. (2007). Triadic IBD coefficients and applications to estimating pairwise
25 26 27	1078	relatedness. Genetics Research, 89(3), 135-153.
28 29	1079	https://doi.org/10.1017/S0016672307008798
30 31 22	1080	Wang, J. (2011). COANCESTRY: A program for simulating, estimating and analyzing
33 34	1081	relatedness and inbreeding coefficients. Molecular Ecology Resources, 11, 141-145.
35 36	1082	https://doi.org/10.1111/j.1755-0998.2010.02885.x
37 38	1083	Wang, J. (2018). Effects of sampling close relatives on some elementary population genetics
39 40 41	1084	analyses. Molecular Ecology Resources, 18, 41-54. https://doi.org/10.1111/1755-
42 43	1085	0998.12708
44 45	1086	Wang, J. (2019). A parsimony estimator of the number of populations from a STRUCTURE-like
46 47 48	1087	analysis. Molecular Ecology Resources, 19(4), 970-981. https://doi.org/10.1111/1755-
49 50	1088	0998.13000
51 52	1089	Wells, R.S., Scott, M.D. & Irvine, A.B. (1987). The social structure of free-ranging bottlenose
53 54		
55 56 57		49
58 59		
60		http://mc.manuscriptcentral.com/aqc

2 3	1090	dolphins. In H. Genoways (Ed.) Current Mammalogy, Vol. 1. New York, NY: Plenum
4 5 6	1091	Press, pp. 247-306
7 8	1092	Wells, R.S. (1991). The role of long-term study in understanding the social structure of a
9 10 11	1093	bottlenose dolphin community. In K. Pryor and K.S. Norris (Eds.) Dolphin Societies:
12 13	1094	Discoveries and Puzzles. Berkeley, CA: University of California Press, pp. 199-255.
14 15	1095	Wells, R.S. (2003). Dolphin social complexity: Lessons from long-term study and life history. in
16 17 18	1096	F.B.M. de Waal and P.L. Tyack (Eds.) Animal Social Complexity: Intelligence, Culture
19 20	1097	and Individualized Societies. Cambridge, MA: Harvard University Press, pp. 32-56.
21 22	1098	Wells, R.S., Schwacke, L.H., Pervles, T.K., Balmer, B.C., Zolman, E., Speakman, T. et al.
23 24 25	1099	(2017). Ranging patterns of common bottlenose dolphins (Tursiops truncatus) in
25 26 27	1100	Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Endangered Species
28 29	1101	Research, 33, 159-180. https://doi.org/10.3354/esr00732
30 31 32	1102	White, F.J. (1992). Pygmy chimpanzee social organization: Variation with party size and
33 34	1103	between study sites. American Journal of Primatology, 26, 203-214.
35 36	1104	https://doi.org/10.1002/ajp.1350260306
37 38 30	1105	Whitehead, H. & Dufault, S. (1999). Techniques for analyzing vertebrate social structure using
39 40 41	1106	identified individuals: Review and recommendations. Advances in the Study of Behavior,
42 43	1107	28, 33-74. https://doi.org/10.1016/s0065-3454(08)60215-6
44 45	1108	Whitehead, H. (2008). Analyzing Animal Societies: Quantitative Methods for Vertebrate Social
40 47 48	1109	Analysis. Chicago, IL: University of Chicago Press.
49 50	1110	Whitehead, H. (2009). SOCPROG programs: Analyzing animal social structures. Behavioral
51 52	1111	<i>Ecology and Sociobiology</i> , 63, 765-778. https://doi.org/10.1007/s00265-008-0697-y
53 54 55	1112	Wilkinson, K.A., Wells, R.S., Pine III, W.E. & Borkhataria, R.R. (2017). Shark bite scar
56 57		50
58 59		http://mcmanuscriptcentral.com/agc
60		http://me.manusenpreential.com/aqe

1		
2 3 4	1113	frequency in resident common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay,
5 6	1114	Florida. Marine Mammal Science, 33(2), 678-686. https://doi.org/10.1111/mms.12385
7 8 0	1115	Worton, B.J. (1989). Kernel methods for estimating the utilization distributions in home-range
9 10 11	1116	studies. Ecology, 70, 164-168. https://doi.org/10.2307/1938423
12 13	1117	Würsig, B. & Würsig, M. (1977). The photographic determination of group size, composition
14 15	1118	and stability of coastal porpoises (Tursiops truncatus). Science, 198(4318), 755-756.
16 17 18	1119	https://doi.org/10.1126/science.198.4318.755
19 20	1120	Würsig, B. & Jefferson, T.A. (1990). Methods of photo-identification for small cetaceans.
21 22	1121	Reports of the International Whaling Commission Special Issue 12, 43-52.
23 24 25		
25 26		
27		
28 29		
30		
31		
32 33		
34		
35		
36 27		
37 38		
39		
40		
41 42		
43		
44		
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56		51
57 58		
59		
60		http://mc.manuscriptcentral.com/aqc

 TABLE 1. Median group size and mean social network metrics of individual social clusters. Standard error is in parentheses. n:

 number of individuals in each cluster.

Metric	E-central (n=3)	W-central (n=4)	Island (n=65)	Western (n=40)
Number of sightings	31	40	270	267
Group size	17.0 (2.07)	8.5 (2.06)	12.0 (0.96)	8.0 (0.68)
Affinity	1.64 (1.08)	2.06 (0.38)	2.72 (0.19)	2.45 (0.22)
Clustering coefficient	0.04 (0.04)	0.07 (0.01)	0.07 (0.02)	0.07 (0.02)
Eigenvector centrality	0.02 (0.02)	0.02 (0.01)	0.11 (0.04)	0.06 (0.02)
Reach	1.06 (1.18)	1.05 (0.93)	7.18 (2.41)	5.35 (2.03)
Strength	0.48 (0.42)	0.46 (0.40)	2.61 (0.76)	2.16 (0.74)
			1:	

TABLE 2. Genetic differentiation among the Barataria Basin genetic clusters (western, eastcentral, and island) identified by STRUCTURE analysis and the Western Coastal Stock (WCS). A: Pairwise estimates of F_{ST} using nuclear microsatellite data. B: mtDNA pairwise estimates of Φ_{ST} above and F_{ST} below the diagonal. *P*-values are in parentheses and significant pairwise comparisons after sequential Bonferroni correction are in bold. n: number of samples.

A:	n	Western	East-central	Island	WCS
Western	53				
East-central	49	0.031 (< 0.0001)			
Island	57	0.030 (< 0.0001)	0.023 (< 0.0001)		
WCS	29	0.044 (< 0.0001)	0.027 (< 0.0001)	0.021 (<0.0001)	
Overall $F_{\rm ST}$ =	= 0.029	, <i>P</i> < 0.0001			

Overall $F_{\rm ST}$ =	= 0.029	0, <i>P</i> < 0.0001			
B:	n	Western	East-central	Island	WCS
Western	52		0.032 (0.0451)	0.023 (0.0661)	0.243 (< 0.0001)
East-central	46	0.076 (0.0030)		0.039 (0.0304)	0.156 (< 0.0001)
Island	55	0.010 (0.1787)	0.113 (0.0002)		0.163 (0.0001)
WCS	28	0.196 (< 0.0001)	0.102 (0.0001)	0.227 (< 0.0001)	

Overall $\Phi_{ST} = 0.099, P < 0.0001$ Overall $F_{ST} = 0.112, P < 0.0001$

TABLE 3. Tests of sex-biased dispersal in the Barataria Basin genetic clusters (GEN) and social clusters (SOC) using the mean Assignment Index correction (mAIc) values calculated in GenAlEx. Significance test results are shown for a two-tailed Mann Whitney U-test (Z and Probability). No values were significant between male and female pairs for any group. n: number of samples.

		n			mAIc	
Group	Male	Female	Male	Female	Z	Probability
GEN-western	29	24	0.360	-0.435	-0.643	0.520
GEN-east-central	20	29	0.322	-0.222	0.590	0.555
GEN-island	29	28	0.546	-0.565	-1.660	0.097
SOC-western	8	5	-0.514	0.823	1.171	0.242
SOC-island	7	7	-0.292	0.292	-0.447	0.655
Barataria Basin	100	95	0.195	-0.205	-0.873	0.383

TABLE 4. Number of individuals (n), cumulative number of sighting locations, bandwidth, and 50% and 95% utilization distributions (UDs) areas (km²) for each social (SOC) and genetic (GEN) cluster.

Cluster	n	Cumulative # of locations	Bandwidth	50% area (km ²)	95% area (km ²)
SOC-East-central	3	33	467	0.99	7.6
SOC-West-central	4	42	700	2.6	13.2
SOC-Island	65	765	667	1.5	22.4
SOC-Western	40	504	567	4.8	37.1
GEN-East-central	49	493	1267	7.2	48.8
GEN-Island	57	883	1100	4.0	37.6
GEN-Western	53	861	933	3.9	31.4
			erien		

TABLE 5. Comparison of genetic samples (n=28) that qualified for the SOCPROG analysis along with satellite telemetry assignment group. Genetic assignments are based on STRUCTURE membership coefficients (q) \geq 0.50. SOC-GEN represents the proportion of social clusters that matched the genetic assignment. SOC-GEN-TEL represents the proportion of social clusters that matched both genetic and satellite telemetry assignments. SOC-TEL represents the proportion of social clusters that matched the satellite telemetry assignment. Clusters in bold represent matches. nd: data not available. es. nd: uau .

Aquatic Conservation: Marine and Freshw	vater Ecosystems

Page	58	of	65
rayc	50	UI.	05

Field #	SOCPROG cluster	Genetic cluster (q)	Sat telemetry	Sex	Age	SOC-GEN match	SOC-GEN-TEL match	SOC-TEL match
Y22	west-central	western (0.75)	western	М	nd	0/1 (0%)	0/1 (0%)	0/1 (0%)
BW120223-06	island	western (0.89)	na	М	nd			
Y75	island	western (0.93)	western	F	>10			
TYP100814-03	island	island (0.82)	na	М	nd			
Y20	island	east-central (0.90)	western	М	30			
YF8	island	island (0.63)	island	М	12			
R3100511-03	island	unassigned	na	М	nd	6/11 (55%)	2/6 (33%)	3/7 (43%)
Y60	island	island (0.58)	na	М	11	0/11 (00/0)	2/0 (33/0)	5/7 (1570)
Y63	island	island (0.83)	na	F	>10	M: 3/6 (50%)	M: 1/3 (33%)	M: 1/3 (33%)
YV5	island	island (0.54)	na	F	24	F: 3/5 (60%)	F: 1/3 (33%)	F: 2/4 (50%)
BW120220-03	island	unassigned	na	F	nd			
Y03	island	unassigned	western	F	15			
Y17	island	island (0.89)	island	F	14			
Y19	island	western (0.68)	island	F	15			
Y18	island	east-central (0.85)	western	М	nd			
YJ2	western	unassigned	western	М	23			
Y00	western	island (0.76)	western	М	17			
R3100511-01	western	unassigned	na	М	nd			
BW120223-01	western	island (0.75)	na	M	nd			
¥53	western	western (0.88)	na	F	10			
Y45	western	western (0.78)	na	F	19	6/10 (60%)	2/4 (50%)	5/6 (83%)
	western	unassigned	western	M	nd			()
V08	western	western (0.59)	island	M	22	M: 2/5 (40%)	M: 0/2 (0%)	M: 3/4 (75%)
 	western	western (0.5)	wostorn	F	>10	F: 4/5 (80%)	F: 2/2 (100%)	F: 2/2 (100%)
	western	$\frac{\text{western}(0.51)}{\text{island}(0.76)}$	western	F	17			
DW120222 02	western	$\frac{151010}{1000000000000000000000000000000$	na	T M	17 nd			
N04	western	island (0.56)	na	M	12			
Y15	western	Island (0.36)	na	IVI E	13			
¥15	western	western (0./4)	western	F	13			

E	7
J	/

FIGURE 1. Barataria Basin study area with photo-ID tracklines from the two phases of field effort. Phase 1 (black dashed line): 2010-2014 (10 primary periods; see McDonald et al., 2017 for details) as part of the *Deepwater Horizon* (DWH) Natural Resource Damage Assessment (NRDA), and Phase 2 (solid colored lines): March 2019 as part of an Environmental Impact Statement required for the Mid-Barataria Sediment Diversion (MBSD). The inset in the upper right depicts the same area outlined in the main image, and shows the biopsy sample locations (black dots) within the basin used for the genetic analysis.

FIGURE 2. Number of identified individuals, including previously and newly identified, observed within each primary period, and total number of individuals in the Barataria Basin photo-ID catalog observed during mark-recapture surveys.

FIGURE 3. SOCPROG dendrogram showing the result from the association analysis using average linkage and simple ratio index for the 112 Barataria Basin dolphins with 10 or more sightings from mark-recapture photo-ID surveys (2010 - 2019). Dolphin catalog ID's are listed on the y-axis. Dolphin clusters are joined by vertical black lines and differentiated by color: east-central (green), west-central (blue), island (red), and western (yellow). The analysis resulted in a cophenetic correlation coefficient of 0.80 and modularity value of 0.34.

FIGURE 4. Genetic clustering assignments of individual dolphins within Barataria Basin from STRUCTURE analysis (K = 3). A) Sampling locations of the three genetic clusters: east-central

(green circles), island (red circles), and western (yellow circles); and the unassigned individuals (black circles). Number of samples (n) assigned to each cluster and average membership coefficient (q) values are shown for each. B) STRUCTURE bar plot. Each vertical column represents one individual and proportional membership assignments to each of the three clusters is represented by the different colors based on q-value (y-axis). Individuals are grouped into clusters using a q-value threshold of 0.50 and separated by a black line.

FIGURE 5. Average pairwise relatedness and variance (error bars) estimated using COANCESTRY within the genetic clusters (GEN), social clusters (SOC), and the entire genetic data set (Barataria Basin). Values are shown for the overall pairs (gray bars), female-female pairs (red), and male-male pairs (blue). Significant differences between the overall relatedness of each cluster and Barataria Basin data set are denoted with * above the bar. Tests of differences between female and male pairs were only significant for the east-central genetic cluster.

FIGURE 6. 95% and 50% percent volume contours (PVC) (i.e. utilization distributions (UDs)) calculated using kernel density estimates (KDEs) from cumulative photo-ID sightings for each of the four Barataria Basin SOCPROG clusters (top row): western (yellow); island (red); east-central (green); west-central (blue) and the three Barataria Basin genetic groups from the STRUCTURE analyses (bottom row): western (yellow); island (red); east-central (green).

60

FIGURE 1. Barataria Basin study area with photo-ID tracklines from the two phases of field effort. Phase 1 (black dashed line): 2010-2014 (10 primary periods; see McDonald et al., 2017 for details) as part of the Deepwater Horizon (DWH) Natural Resource Damage Assessment (NRDA), and Phase 2 (solid colored lines): March 2019 as part of an Environmental Impact Statement required for the Mid-Barataria Sediment Diversion (MBSD). The inset in the upper right depicts the same area outlined in the main image, and shows the biopsy sample locations (black dots) within the basin used for the genetic analysis.

245x184mm (300 x 300 DPI)

60

FIGURE 2. Number of identified individuals, including previously and newly identified, observed within each primary period, and total number of individuals in the Barataria Basin photo-ID catalog observed during mark-recapture surveys.

236x149mm (300 x 300 DPI)

FIGURE 3. SOCPROG dendrogram showing the result from the association analysis using average linkage and simple ratio index for the 112 Barataria Basin dolphins with 10 or more sightings from mark-recapture photo-ID surveys (2010 - 2019). Dolphin catalog ID's are listed on the y-axis. Dolphin clusters are joined by vertical black lines and differentiated by color: east-central (green), west-central (blue), island (red), and western (yellow). The analysis resulted in a cophenetic correlation coefficient of 0.80 and modularity value of 0.34.

736x373mm (300 x 300 DPI)

FIGURE 4. Genetic clustering assignments of individual dolphins within Barataria Basin from STRUCTURE analysis (K = 3). A) Sampling locations of the three genetic clusters: east-central (green circles), island (red circles), and western (yellow circles); and the unassigned individuals (black circles). Number of samples (n) assigned to each cluster and average membership coefficient (q) values are shown for each. B) STRUCTURE bar plot. Each vertical column represents one individual and proportional membership assignments to each of the three clusters is represented by the different colors based on q-value (y-axis). Individuals are grouped into clusters using a q-value threshold of 0.50 and separated by a black line.

849x932mm (120 x 120 DPI)

60

FIGURE 5. Average pairwise relatedness and variance (error bars) estimated using COANCESTRY within the genetic clusters (GEN), social clusters (SOC), and the entire genetic data set (Barataria Basin). Values are shown for the overall pairs (gray bars), female-female pairs (red), and male-male pairs (blue). Significant differences between the overall relatedness of each cluster and Barataria Basin data set are denoted with * above the bar. Tests of differences between female and male pairs were only significant for the east-central genetic cluster.

187x111mm (300 x 300 DPI)

- 57 58
- 59

GURE 6. 95% and 50% percent volume contours (PVC) (i.e. utilization distributions (UDs)) calculate ring kernel density estimates (KDEs) from cumulative photo-ID sightings for each of the four Baratar

3.25 6.5 13 k

FIGURE 6. 95% and 50% percent volume contours (PVC) (i.e. utilization distributions (UDs)) calculated using kernel density estimates (KDEs) from cumulative photo-ID sightings for each of the four Barataria Basin SOCPROG clusters (top row): western (yellow); island (red); east-central (green); west-central (blue) and the three Barataria Basin genetic groups from the STRUCTURE analyses (bottom row): western (yellow); island (red); east-central (green).

812x325mm (300 x 300 DPI)

Supporting Information

FIGURE S1. Bayesian clustering assignments of dolphins from STRUCTURE analysis of the Barataria Basin and Western Coastal Stock samples. Each individual is represented by a vertical column along the *x*-axis and proportional membership coefficients (q) to the two clusters are shaded in blue or orange. Sampling locations (inside Barataria Basin versus in coastal waters > 2 km from shore) are separated by a black line.

TABLE S1. PCR conditions for the eight multiplexes used to amplify 43 microsatellite loci using the Qiagen Type-it Microsatellite PCR kit. PCR reactions were completed in 10 μL volumes and contained 1x Type-it Multiplex PCR Master Mix and 10 ng of DNA. Thermocycler profiles started with a denaturation step of 95°C for 5 min followed by 26-29 cycles of 95°C for 30 sec, 50-60°C (Ta) for 90 sec, and 72°C for 30 sec with a final extension step at 60°C for 30 min.

			T		Primer final	I		
			Repeat	Multiplex	concentration	Ta (°C), #		
Locus	Forward primer (5'-3')	Reverse primer (5'-3')	type	set	(µM)	of cycles	Species of origin	Reference
MK5	CTCAGAGGGAAATGAGGCTG	GTTTGTCTAGAGGTCAAAGCCTTCC	Di	1	0.10 µM	56, 27	T. aduncus	Krützen et al., 2001
MK6	GTCCTCTTTCCAGGTGTAGCC	GCCCACTAAGTATGTTGCAGC	Di	1	0.10 µM	56,27	T. aduncus	Krützen et al., 2001
MK8	TCCTGGAGCATCTTATAGTGGC	GTTTCTGTGTCTCTTTGACATGCCCTCACC	Di	1	0.075 uM	56, 27	T. aduncus	Vollmer et al., 2021 modification of Krützen et al., 2001
MK9	CATAACAAAGTGGGATGACTCC	GTTTATCCTGTTGGCTGCAGTG	Di	1	0.10 µM	56, 27	T. aduncus	Krützen et al., 2001
TexVet7	TGCACTGTAGGGTGTTCAGCAG	GTTTCTTAATTGGGGGGCGATTTCAC	Di	1	0.10 µM	56, 27	T. truncatus	Rooney, Merritt & Derr, 1999
KWM12a [†]	CCATACAATCCAGCAGTC	GTTTCACTGCAGAATGATGACC	Di	1	0.10 µM	50, 27	O. orca	Hoelzel, Dahlheim & Stern, 1998
Ttr58	TGGGTCTTGAGGGGTCTG	GTTTGCTGAGGCTCCTTGTTGG	Di	2	0.0375 µM	52.27	T. truncatus	Rosel, Forgetta & Dewar, 2005
Ttr63	CAGCTTACAGCCAAATGAGAG	GTTTCTCCATGGCTGAGTCATCA	Di	2	0.20 uM	52, 27	T. truncatus	Rosel, Forgetta & Dewar, 2005
TexVet5	GATTGTGCAAATGGAGACA	GTTTGAGATGACTCCTGTGGG	Di	2	0.05 µM	52, 27	T. truncatus	Rooney, Merritt & Derr, 1999
EV37	AGCTTGATTTGGAAGTCATGA	GTTTAGTAGAGCCGTGATAAAGTGC	Di	2	0.30 µM	52, 27	M. novaeangliae	Valsecchi & Amos, 1996
PPHO130	CAAGCCCTTACACATATG	GTTTATTGAGTAAAAGCAATTTTG	Di	3	0.30 µM	50.29	P nhocoena	Rosel et al 1999
TtrFF6	AAGTAAGTGCTCCTTTGACTGG	GTTTGGCAGAGAGAGATATTAGGACAGC	Di	3	0.15 µM	50,29	T truncatus	Rosel Forgetta & Dewar 2005
Ttr04	CTGACCAGGCACTTTCCAC	GTTTGTTTCCCAGGATTTTAGTGC	Di	3	0.075 µM	50,29	T truncatus	Rosel Forgetta & Dewar 2005
Ttr11	CTTTCAACCTGGCCTTTCTG	GTTTGGCCACTACAAGGGAGTGAA	Di	3	0.05 µM	50,29	T truncatus	Rosel Forgetta & Dewar, 2005
Ttr19	TGGGTGGACCTCATCAAATC	GTTTAAGGGCTGTAAGAGG	Di	3	0.00 µM	50, 29	T truncatus	Rosel, Forgetta & Dewar, 2005
Ttr34	GCACATGAGTATGTGGACAGG	GTTTCCTCCTTGGGAGTGTCCTCT	Di	4	0.05 µM	58.28	T truncatus	Rosel Forgetta & Dewar 2005
Ttr48	AAGAGGATGCAAATGGCAAG	GTTTGGTAAGAAAATACCAAAGTCC	Di	4	0.0375 µM	58,28	T truncatus	Rosel Forgetta & Dewar, 2005
EV14	TAAACATCAAAGCAGACCCC	GTTTCCAGAGCCAAGGTCAAGAG	Di	4	0.30 µM	58, 28	P. macrocephalus	Valsecchi & Amos. 1996
EV94	ACATGGCCATCGCTCTTAAC	GTTTATAAGGGTGAATTTTATGG	Di	4	0.30 µM	58, 28	M. novaeangliae	Vollmer & Rosel, 2017 modification of Valsecchi & Amos, 1996
Ttr36(tetra)	GGACATAACTAGCTTTCTTGCTTGC	GTTTGTCTGCATAGTGCGAGGCG	Tetra	5	0.05 µM	54 27	T truncatus	Rosel et al. 2017
Ttr54	GAAGGGCAAACAAGATATCGG	GTTTCTCCGTCTCCTGTTCAATGC	Di	5	0.125 µM	54 27	T truncatus	Rosel et al. 2017
Ttr55		GTTTCCAAAGAGCATTGCAGAGG	Di	5	0.125 µM	54 27	T truncatus	Rosel et al. 2017
Ttr61	GCCATCGTGAATAAAGACGC	GTTTGGAAGTTCTTACTTGTATTGAGGGC	Di	5	0.10 µM	54 27	T truncatus	Rosel et al. 2017
Ttr90	AGGGTTCTCCAGAAACATAGGG	GTTTCACAATCATGAGAGCCAGTTCC	Di	5	0.10 µM	54, 27	T. truncatus	Rosel et al., 2017
Ttr98	CCATTGCATTTCAATACCACC	GTTTCAGAGAATTCAGAAACGGAGC	Di	5	0.10 µM	54.27	T. truncatus	this study. Rosel et al., 2017
Ttr100	GTCTTGGATTACACGGGCG	GTTTGGCAGGCAGAAGATAAAGC	Di	5	0.05 µM	54, 27	T. truncatus	Rosel et al., 2017
Ttr12	AAATTCTTCTTAGTCATGTTTCCACC	GTTTCACATCACATTCAGAATAGTCTTTGC	Tetra	6	0.10 µM	60.26	T truncatus	Rosel et al 2017
Ttr20	CCAATCTCTAAGGTGGTTCTGGG	GTTTCCCATTGGTCACTTGGTTACG	Tetra	6	0.025 µM	60,20	T truncatus	this study. Rosel et al. 2017
Ttr41	TGCTTCCTAATGCCACATCC	GTTTCAGAGCCATTGCTCATAAACC	Tetra	6	0.05 µM	60,26	T truncatus	Rosel et al. 2017
Ttr51	GCTAAGATATTGACATATTTCCCTGG	GTTTGGTGGTTGATTCAGAACC	Di	6	0.05 µM	60,26	T truncatus	this study. Rosel et al. 2017
Ttr52	TGGACTCAGAGAGAGATAGGTGG	GTTTGGCTGCCTTGTGTGTCTGTAAGC	Di	6	0.125 µM	60,26	T truncatus	Rosel et al. 2017
DlrFCB1	TGCATCTCCATGGTATGTCTTATCC	GTTTAGCCTCTGCTATGCCTGGAACGC	Di	6	0.10 µM	60, 26	D. leucas	Buchanan et al., 1996
Ttr56	CTGCATTCACCTCCTCACC	GTTTATGATGCAATCACAGGCTGC	Di	7	0.15 µM	60,26	T truncatus	Rosel et al. 2017
Ttr83	TGCATATTTGAGATTTCTAGCTCC	GTTTGCAGAAGTATCGGTCAAGC	Di	7	0.10 µM	60,26	T truncatus	Rosel et al. 2017
D08	ATCCATCATATTGTCAAGTT	GTTTTCCTGGGTGATGAGTCTTC	Di	7	0.20 µM	60,26	T truncatus	Rosel et al. 2017 modification of Shinohara Domingo-Roura & Takenaka 1997
D22	GTTTGGAAATGCTCTGAGAAGGTC	CCAGAGCACCTATGTGGAC	Di	7	0.035 µM	60,26	T truncatus	Shinohara Domingo-Roura & Takenaka 1997
Dde70	ACACCAGCACCTACATTCACA	GTTTTCAGCAGCATTCTAACCAAAC	Di	7	0.050 µM	60,20	D delphis	Coughlan et al 2006
Ttr71	CCCTTATTAATCAGAGAGAGAGAGGG	GTTTCTCTTACCTCTTCTTTCCTGTGG	Tetra	8	0.025 µM	54 27	T truncatus	Rosel et al. 2017
Ttr78	AAAGCTGAGGAGACTTGAGATGG	GTTTGGCTAAGGATGCCATTGAGG	Tetra	8	0.035 µM	54 27	T truncatus	Rosel et al. 2017
Ttr84	TTATCTATTCACTTCAACCACACG	GTTTAAATGTGTCTTAGGAAGACTGAACC	Di	8	0.10 µM	54 27	T truncatus	Rosel et al. 2017
DirFCB3	CAAGTGCCTATCAGTAGATGAATG	GTTTCTTGTATCTATAACTCTGGTTATGG	Di	8	0.25 µM	54 27	D leucas	Buchanan et al. 1996
DIFECTIO	CTCACTTAATATACATCTAATCCATCC		D:	0	0.20 µM	54 27	D. Icucus	this study modification of Ducksman et al. 1000
SW10		GTTTACTTCTCCCCCTTTTCACCTA	Di	ð	0.20 µM	54,27	D. leucas	Dishard Whitehood & Weight 1006
SW19	UTAUTTICITTAACAUTAATU	UTHAUTUIOOUTHICACCIA	DI	0	0.075 µM	34,27	1. macrocepnalus	Kienard, wintenead & wright, 1990

[†]KWM12a was amplified alone and then 2 μL of the PCR reaction was coloaded with 2 μL of the MK5/MK6/MK8/MK9/TexVet7 PCR reaction.

[‡]Buchanan DlrFCB12 reverse primer sequence is CAAAGAGATAGCTAAATAAACAGTAAC; a G (in bold & underlined) has been removed from our primer sequence.

TABLE S2. Estimations for the optimal number of clusters (K) using Evanno's ΔK , Pritchard's mean log-likelihood of the data (ln Pr(X/K)) with standard deviation (Stdev), and Wang's parsimony index (PI) for each STRUCTURE run. The most likely K from each method is bolded in each table. When the most likely ΔK was below a value of 10, samples could not be assigned to more than one cluster for that K, therefore the best K was determined to be 1 as estimated by the other two methods. Plots of ΔK (solid gray line) and mean ln Pr(X/K) (dashed black lines with Stdev plotted) are provided for each STRUCTURE run. n: number of samples.

•

1

2

3 4 5 6 7

2) Western Coastal Stock cluster (n=29)

-3500

4500

-4500 -5000 -5500 -6000 -6500 -7000 -7500 Wean Ln Br(X,K) -8000 -8500 -8500

-8500

-9000

-9500

4) Barataria western cluster (n=53)

K

8

TABLE \$3. Genetic diversity based on the 43 microsatellite loci genotyped for the Western Coastal Stock (WCS) and the Barataria Basin western, east-central, and island clusters identified by STRUCTURE analysis. NA: number of alleles, PA: number of
private alleles with values in parentheses showing PA among the Barataria Basin clusters only, AR: allelic richness, He: observed heterozygosity, He: expected heterozygosity, and HWE P-value: tests for departure from Hardy-Weinberg equilibrium (no P-values
were significant after Bonferroni correction). s.d. = standard deviation. n: number of samples.

	Western (n=53)						East-central (n=49)					Island (n=57)					WCS (n=29)							
				(,		HWE					, 	HWE						HWE						HWE
Locus	N _A	PA	AR	Ho	He	P-value	NA	PA	AR	Ho	He	P-value	NA	PA	AR	Ho	He	P-value	NA	PA	AR	Ho	He	P-value
Ttr04	8	0	7.83	0.792	0.786	0.864	9	0	8.02	0.816	0.838	0.467	11	1(1)	8.93	0.825	0.796	0.200	9	0	9.00	0.793	0.806	0.749
Ttr19	3	0	3.00	0.491	0.457	0.554	3	0	3.00	0.347	0.552	0.002	3	0	3.00	0.456	0.499	0.486	5	2	5.00	0.621	0.564	0.434
Ttr11	7	0	6.51	0.736	0.772	0.615	8	1(1)	7.16	0.694	0.729	0.137	7	0	6.47	0.754	0.756	0.105	6	0	6.00	0.655	0.716	0.585
Ttr48	2	0	2.00	0.264	0.231	0.576	2	0	2.00	0.224	0.232	1.000	2	0	1.97	0.088	0.085	1.000	2	0	2.00	0.241	0.216	1.000
Ttr34	4	0	3.79	0.358	0.316	1.000	5	0	4.42	0.306	0.338	0.028	5	0	4.02	0.333	0.349	0.429	5	1	5.00	0.276	0.256	1.000
Ttr63	13	0	12.73	0.887	0.905	0.938	15	1(1)	13.29	0.857	0.871	0.112	16	1(1)	14.07	0.807	0.882	0.254	12	0	12.00	0.897	0.845	0.631
Ttr58	3	0	3.00	0.660	0.635	0.963	3	0	3.00	0.592	0.612	0.198	3	0	3.00	0.667	0.560	0.047	3	0	3.00	0.621	0.615	0.600
EV37	11	0	10.14	0.906	0.884	0.081	17	1 (4)	14.79	1.000	0.911	0.784	15	0(3)	12.86	0.912	0.888	0.879	20	3	20.00	0.897	0.924	0.269
TexVet5	4	1(1)	3.55	0.755	0.634	0.084	3	0	3.00	0.367	0.498	0.009	4	1(1)	3.51	0.614	0.589	1.000	3	0	3.00	0.310	0.406	0.174
EV14	8	0	7.82	0.849	0.827	0.654	10	1(1)	9.01	0.857	0.835	0.237	11	2 (2)	9.74	0.895	0.855	0.027	8	0	8.00	0.828	0.841	0.772
EV94	3	0	3.00	0.528	0.563	0.832	3	0	2.94	0.571	0.507	0.727	3	0	3.00	0.632	0.531	0.094	4	1	4.00	0.621	0.579	0.352
MK6	7	0	6.98	0.755	0.802	0.615	7	0	6.72	0.755	0.738	0.173	7	0	6.93	0.825	0.773	0.338	9	2	9.00	0.897	0.831	0.008
MK8	5	0	4.98	0.528	0.587	0.068	5	0	4.81	0.429	0.526	0.326	5	0	4.88	0.579	0.591	0.931	6	1	6.00	0.724	0.718	0.145
MK9	4	0	4.00	0.736	0.673	0.319	5	1(1)	4.18	0.837	0.656	0.026	4	0	3.95	0.667	0.630	0.670	4	0	4.00	0.586	0.642	0.262
KWM12a	5	1(1)	4.88	0.491	0.436	0.818	6	0	5.57	0.653	0.702	0.657	6	0	5.50	0.649	0.669	0.218	4	0	4.00	0.690	0.626	0.974
MK5	5	0	4.89	0.434	0.474	0.179	6	0	5.43	0.735	0.708	0.690	6	0	4.99	0.772	0.681	0.299	6	1	6.00	0.793	0.688	0.256
TexVet7	4	0	3.80	0.434	0.396	0.561	4	0	3.93	0.551	0.501	0.887	4	0	3.51	0.596	0.581	0.984	4	0	4.00	0.586	0.649	0.458
TtrFF6	7	2 (2)	5.85	0.566	0.580	0.632	5	0	4.83	0.612	0.644	0.579	8	3 (3)	6.48	0.456	0.443	0.288	5	0	5.00	0.724	0.714	0.486
PPHO130	5	0	4.09	0.623	0.594	0.404	4	0	3.94	0.592	0.537	0.114	6	1(1)	5.39	0.596	0.537	0.841	6	1	6.00	0.655	0.699	0.390
Ttr36(tetra)	2	0	4.91	0.811	0.736	0.482	/	1(1)	6.15	0.714	0.6//	0.566	0	0	5.65	0.737	0.704	0.718		2	7.00	0.724	0.765	0.329
1054	9	0	8.51	0.962	0.832	0.713	8	0	1.57	0.816	0.848	0.195	10	0(1)	9.42	0.842	0.844	0.373	11	1	11.00	0.931	0.855	0.018
1tr55	2	0	4.96	0.774	0./15	0./1/	2	0	4.//	0.796	0.669	0.585	5	0	4./4	0.614	0.621	0.161	4	1	4.00	0.621	0.591	1.000
Turo1	0 5	0	1.09	0.774	0.805	0.001	° c	0	7.10	0.6571	0.805	0.097	9	0	5.10	0.912	0.655	0.975	- 11 - 6	5	5.00	0.697	0.800	0.801
Tu-08	3	0	4.54	0.042	0.000	0.204	0	0	2.80	0.571	0.590	0.124	6	1(1)	5.05	0.579	0.005	0.230	5	1	5.00	0.621	0.585	0.971
Ttr 100	4	0	5.80	0.755	0.000	0.057	4	0	5.84	0.035	0.570	0.875	5	1 (1)	4.45	0.614	0.008	0.390	5	1	5.00	0.552	0.554	0.285
Ttr100	5	0	4 00	0.698	0.776	0.205	4	0	2.00	0.810	0.805	0.955	7	2 (2)	6.24	0.049	0.745	0.084	5	0	5.00	0.628	0.734	0.374
Tu12 Ttr20	6	0	5.00	0.042	0.040	0.330	6	0	5.26	0.714	0.555	0.708	6	2 (2)	5.02	0.439	0.501	0.400	6	1	6.00	0.552	0.578	0.199
Ttr41	2	0	2.00	0.491	0.471	0.409	2	0	2.00	0.429	0.555	0.020	2	0	3.02	0.301	0.581	0.400	5	2	5.00	0.580	0.055	0.097
Ttr51	4	0(1)	3 34	0.004	0.223	0.778	3	0	2.84	0.388	0.319	0.320	3	0	2.00	0.772	0.071	0.128	5	1	5.00	0.090	0.525	0.017
Ttr52	6	0	4 64	0.717	0.671	0.500	6	0(1)	5.42	0.571	0.621	0.192	6	0	5.27	0.632	0.578	0.000	7	1	7.00	0.655	0.710	0.346
DIrFCB1	6	ő	5 78	0.736	0.756	0.102	8	0	7.56	0.796	0.810	0.543	9	ő	8 46	0.719	0.755	0.607	10	1	10.00	0.862	0.825	0.336
Ttr56	4	ő	3.96	0.491	0.433	0.800	5	1.00	4.53	0.388	0.449	0.194	4	0(1)	3.99	0.439	0.491	0.422	8	3	8.00	0.724	0.719	0.296
Ttr83	6	ő	5.79	0.755	0.701	0.761	5	0	5.00	0.714	0.704	0.940	6	0	5.50	0.614	0.580	0.496	5	õ	5.00	0.690	0.700	0.767
D08	5	õ	4.67	0.358	0.370	0.323	5	0	4.67	0.469	0.487	0.903	4	õ	3.97	0.421	0.460	0.294	5	1	5.00	0.621	0.628	0.163
D22	7	0	6.48	0.698	0.705	0.385	7	0	6.81	0.735	0.724	0.274	7	1(1)	6.88	0.807	0.809	0.186	6	0	6.00	0.828	0.796	0.975
Dde70	3	0	2.80	0.453	0.523	0.216	3	0	3.00	0.449	0.464	0.352	5	2 (2)	4.71	0.544	0.518	0.433	3	0	3.00	0.552	0.529	0.834
Ttr71	3	0	3.00	0.623	0.599	0.258	4	0	4.00	0.735	0.700	0.667	4	ò	4.00	0.772	0.695	0.616	5	1	5.00	0.828	0.752	0.292
Ttr78	2	0	2.00	0.226	0.203	1.000	3	0	2.94	0.286	0.284	0.033	3	0	3.00	0.386	0.392	0.100	3	0	3.00	0.207	0.194	1.000
Ttr84	7	0	6.85	0.698	0.736	0.871	8	1(1)	7.38	0.633	0.686	0.484	8	1(1)	7.27	0.719	0.740	0.734	7	1	7.00	0.724	0.747	0.836
DlrFCB3	5	0	4.46	0.755	0.643	0.671	5	0	5.00	0.673	0.639	0.959	5	0	5.00	0.772	0.753	0.611	6	1	6.00	0.724	0.765	0.390
DlrFCB12	6	0	5.98	0.604	0.587	0.788	7	0(1)	6.16	0.592	0.557	0.577	7	1(1)	6.87	0.684	0.675	0.189	7	0	7.00	0.724	0.757	0.493
SW19	5	0	4.51	0.491	0.492	0.806	4	0	3.59	0.449	0.468	0.857	4	0	3.27	0.596	0.519	0.383	3	0	3.00	0.655	0.550	0.229
Total	234	4 (5)					251	8 (13)					266	18 (23)					266	34				
Mean	5.4		5.120	0.6222	0.6052		5.8		5.428	0.6170	0.6195		6.2		5.630	0.6385	0.6247		6.2		6.186	0.6632	0.6612	
s.d.	2.3		2.134	0.1817	0.1766		3.0		2.560	0.1833	0.1559		3.0		2.572	0.1687	0.1594		3.2		3.157	0.1793	0.1642	

TABLE S4. Mitochondrial DNA haplotypes from Barataria Basin and the Western Coastal Stock (WCS). Counts for the Barataria Basin samples are given for the clusters identified with STRUCTURE analyses (western, east-central, and island) and the unassigned individuals (no $q \ge 0.50$ for any cluster), as well as individuals removed from the Barataria Basin data set due to $q \ge 0.50$ to the WCS in the initial STRUCTURE run. Haplotype name and sample size for haplotypes used in pairwise tests of genetic differentiation are in bold. Heteroplasmic haplotypes are labeled with 'hpl'.

		Ba	arataria E	Basin				
Haplotype name	Western	East-central	Island	Unassigned	Removed	WCS	GenBank Accession	Reference
Ttr2	28	10	33	12	4	2	AY997308	Sellas et al., 2005
Ttr16	2	2	0	2	0	10	AY997309	Sellas et al., 2005
GTtr18	1	6	2	1	0	0	GQ504051	Rosel et al., 2009
GTtr19	0	3	4	4	0	4	AY997307	Sellas et al., 2005
GTtr23	1	0	3	0	0	0	GQ504062	Kingston et al., 2009
GTtr30	11	17	12	9	4	4	AY997311	Sellas et al., 2005
GTtr45	0	0	0	0	0	1	JN944196	Vollmer and Rosel, 2017
GTtr46	0	0	0	0	0	1	JN944197	Vollmer and Rosel, 2017
GTtr48	0	0	0	0	0	2	JN944199	Vollmer and Rosel, 2017
GTtr54	0	0	0	0	0	1	JN944205	Vollmer et al., 2021
GTtr57	0	0	0	1	0	0	JN944208	this study
GTtr62	0	0	0	0	0	1	JN944213	Vollmer and Rosel, 2017
GTtr72	9	7	1	6	0	0	MZ615655	this study
GTtr73	0	1	0	0	0	0	MZ615656	this study
GTtr75	0	0	0	0	0	1	MZ615657	this study
GTtr76	0	0	0	0	0	1	MZ615658	this study
11Tt079hpl	0	1	0	0	0	0	MZ615659	this study
16Tt269hpl	0	1	0	0	0	0	MT380121	Vollmer et al., 2021
21Tt086hpl	0	0	1	0	0	0	MZ615660	this study
24Tt052hpl	1	0	0	0	0	0	MZ615661	this study
24Tt074hpl	0	0	1	0	0	0	MZ615662	this study
24Tt139hpl	0	0	0	1	0	0	MZ615663	this study
26Tt083hpl	0	1	0	0	0	0	MZ615664	this study
40Tt011hpl	0	0	0	0	0	1	MZ615665	this study
Total used in analysis:	52	46	55	0	0	28		

TABLE S5. Average pairwise relatedness (r) and variance estimated using COANCESTRY and tests for significant differences between A) the genetic clusters (GEN), social clusters (SOC) and the entire genetic data set (Barataria Basin) and B) for each sex within the groups. The 2.5% and 97.5% quantiles obtained from the bootstrapping method to test differences in average relatedness between groups are given. Significant differences in r using a 95% confidence level are in bold when comparing A) each cluster to the entire data set and B) male and females pairs within each group. n: number of samples.

_ <u>A:</u>						
Group	n	average r	variance	<i>r</i> observed average difference	2.5% quantile	e 97.5% quantile
GEN-western	53	0.0497	0.0054	0.0234	-0.0023	0.0025
GEN-east-central	49	0.0425	0.0041	0.0162	-0.0026	0.0027
GEN-island	57	0.0371	0.0034	0.0109	-0.0022	0.0023
SOC-western	13	0.0417	0.0096	0.0154	-0.0096	0.0116
SOC-island	14	0.0235	0.0021	-0.0027	-0.0087	0.0108
Barataria Basin	195	0.0262	0.0023			

B:

		n	avera	age r	vari	ance	r observed average		
Group	Male	Female	Male	Female	Male	Female	difference	2.5% quantile	97.5% quantile
GEN-western	29	24	0.0485	0.0495	0.0054	0.0058	0.0010	-0.0111	0.0114
GEN-east-central	20	29	0.0499	0.0367	0.0068	0.0026	-0.0132	-0.0112	0.0106
GEN-island	29	28	0.0405	0.0339	0.0033	0.0030	-0.0067	-0.0081	0.0077
SOC-western	8	5	0.0178	0.0734	0.0008	0.0210	0.0556	-0.0353	0.0639
SOC-island	7	7	0.0165	0.0433	0.0013	0.0048	0.0268	-0.0307	0.0347
Barataria Basin	100	95	0.0264	0.0258	0.0023	0.0022	-0.0006	-0.0019	0.0019

REFERENCES FROM SUPPORTING INFORMATION

- Buchanan, F.C., Friesen, M.K., Littlejohn, R.P. & Clayton, J.W. (1996). Microsatellites from the beluga whale *Delphinapterus leucas*. *Molecular Ecology*, 5(4), 571-575. https://doi.org/10.1111/j.1365-294x.1996.tb00348.x
- Coughlan, J., Mirimin, L., Dillane, E., Rogan, E. & Cross, T.F. (2006). Isolation and characterization of novel microsatellite loci for the short-beaked common dolphin (*Delphinus delphis*) and cross-amplification in other cetacean species. *Molecular Ecology Notes*, 6(2), 490-492. https://doi.org/10.1111/j.1471-8286.2006.01284.x
- Hoelzel, A.R., Dahlheim, M. & Stern, S.J. (1998). Low genetic variation among killer whales (*Orcinus orca*) in the eastern North Pacific and genetic differentiation between foraging specialists. *Journal of Heredity*, 89(2), 121-128. https://doi.org/10.1093/jhered/89.2.121
- Kingston, S.E., Adams, L.D. & Rosel, P.E. (2009). Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: Molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae). *BMC Evolutionary Biology*, 9(1), 245. https://doi.org/10.1186/1471-2148-9-245_
- Krützen, M., Valsecchi, E., Connor, R.C. & Sherwin, W.B. (2001). Characterization of microsatellite loci in *Tursiops aduncus*. *Molecular Ecology Notes*, 1(3), 170-172. https://doi.org/10.1046/j.1471-8278.2001.00065.x
- Richard, K.R., Whitehead, H. & Wright, J.M. (1996). Polymorphic microsatellites from sperm whales and their use in the genetic identification of individuals from naturally sloughed pieces of skin. *Molecular Ecology*, 5(2), 313-315. https://doi.org/10.1111/j.1365-294x.1996.tb00321.x
- Rooney, A.P., Merritt, D.B. & Derr, J.N. (1999). Brief communication. Microsatellite diversity in captive bottlenose dolphins (*Tursiops truncatus*). *Journal of Heredity*, 90(1), 228-231. https://doi.org/10.1093/jhered/90.1.228
- Rosel, P.E., France, S.C., Wang, J.Y. & Kocher, T.D. (1999). Genetic structure of harbour porpoise *Phocoena phocoena* populations in the northwest Atlantic based on mitochondrial and nuclear markers. *Molecular Ecology*, 8, S41-S54. https://doi.org/10.1046/j.1365-294X.1999.00758.x
- Rosel, P.E., Forgetta, V. & Dewar, K. (2005). Isolation and characterization of twelve polymorphic microsatellite markers in bottlenose dolphins (*Tursiops truncatus*). *Molecular Ecology Notes*, 5(4), 830-833. https://doi.org/10.1111/j.1471-8286.2005.01078.x
- Rosel, P.E., Hansen, L. & Hohn, A.A. (2009). Restricted dispersal in a continuously distributed marine species: Common bottlenose dolphins *Tursiops truncatus* in coastal waters of the western North Atlantic. *Molecular Biology*, 18(24), 5030–5045. https://doi.org/ 10.1111/j.1365-294X.2009.04413.x
- Rosel, P.E., Wilcox, L.A., Sinclair, C., Speakman, T.R., Tumlin, M.C., Litz, J.A. et al. (2017). Genetic assignment to stock of stranded common bottlenose dolphins in southeastern Louisiana after the *Deepwater Horizon* oil spill. *Endangered Species Research*, 33, 221-234. https://doi.org/10.3354/esr00780
- Sellas, A.B., Wells, R.S. & Rosel, P.E. (2005). Mitochondrial and nuclear DNA analyses reveal fine scale geographic structure in bottlenose dolphins (*Tursiops truncatus*) in the Gulf of Mexico. *Conservation Genetics*, 6(5), 715-728. https://doi.org/10.1007/s10592-005-9031-7
- Shinohara, M., Domingo-Roura, X. & Takenaka, O. (1997). Microsatellites in the bottlenose
dolphin *Tursiops truncatus*. *Molecular Ecology*, 6(7), 695. https://doi.org/10.1046/j.1365-294x.1997.00231.x

- Valsecchi, E. & Amos, W. (1996). Microsatellite markers for the study of cetacean populations. *Molecular Ecology*, 5(1), 151-156. https://doi.org/10.1111/j.1365-294x.1996.tb00301.x
- Vollmer, N.L. & Rosel, P.E. (2017). Fine-scale population structure of common bottlenose dolphins (*Tursiops truncatus*) in offshore and coastal waters of the US Gulf of Mexico. *Marine Biology*, 164(8), 160. https://doi.org/10.1007/s00227-017-3186-x
- Vollmer, N.L., Rosel, P.E., Mullin, K.D., Schwacke, L.H., Garrison, L.P., Balmer, B.C. et al. (2021). Assessing common bottlenose dolphin (*Tursiops truncatus*) population structure in Mississippi Sound and coastal waters of the northcentral Gulf of Mexico. *Aquatic Conservation: Marine and Freshwater Ecosystems*, In Press.